Hedysarum polysaccharide alleviates oxidative stress to protect against diabetic peripheral neuropathy via modulation of the keap1/Nrf2 signaling pathway

被引:9
|
作者
He, Liu [1 ,3 ]
Huan, Pengfei [2 ,3 ]
Xu, Jing [1 ]
Chen, Yanxu [3 ]
Zhang, Lei [3 ]
Wang, Jun [3 ]
Wang, Li [1 ,2 ,4 ]
Jin, Zhisheng [3 ]
机构
[1] Guizhou Univ Tradit Chinese Med, Affiliated Hosp 2, Guiyang 550005, Peoples R China
[2] Shanghai Univ Tradit Chinese Med, Sch Basic Med, Dept Diagnost Tradit Chinese Med, Shanghai 201203, Peoples R China
[3] Gansu Univ Chinese Med, Lanzhou 730000, Peoples R China
[4] Shanghai Univ Tradit Chinese Med, Shanghai Municipal Hosp Tradit Chinese Med, Expt Ctr, Shanghai 200071, Peoples R China
基金
中国国家自然科学基金;
关键词
Oxidative stress; Hedysarum polysaccharide; Diabetic peripheral neuropathy; Keap1; Nrf2; pathway; NF-KAPPA-B; AUTOPHAGY; MODEL;
D O I
10.1016/j.jchemneu.2022.102182
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Diabetic peripheral neuropathy (DPN) is a chronic complication of diabetes mellitus. Oxidative stress is implicated in DPN progression, suggesting that antioxidant therapy could be a viable anti-DPN method. Hedysarum polysaccharide (HPS) is an active component of Radix Hedysari, a plant that has been widely used as food and a herb for treating multiple diseases. Here, we evaluated the mechanisms of action of anti-DPN effects of HPS in genetically obese (ob/ob) mice. Schwann cells (SCs) were exposed to glucose (100 mM) in vitro and then treated with HPS at concentrations of 30, 60, 120, and 240 mg/L. Notably, HPS significantly inhibited high glucosemediated cytotoxicity and oxidative stress by reducing malondialdehyde (MDA) levels and upregulating the expression of antioxidant enzymes (gamma-glutamate-cysteine ligase catalytic subunit (GCLC) and glutathione reductase (GR)) in SCs. Moreover, HPS increased the expression of nerve growth factor, stimulated Nrf2 signaling, and decreased Keap1 expression levels. Analysis of DPN mice models gavaged with HPS at 50, 100, and 200 mg/kg/d or lipoic acid (LA) at 30 mg/kg/d (positive control) for 8 weeks revealed that HPS markedly increased motor nerve conduction velocity (MNCV), shortened thermal withdrawal latency (TWL), and inhibited oxidative stress in serum and sciatic nerves of DPN mice models. Mechanistically, HPS suppressed Keap1 signaling and enhanced Nrf2 signaling in sciatic nerves. These findings imply that HPS ameliorates DPN via antioxidant mechanisms and by activating Keap1/Nrf2 signaling, suggesting that HPS is a potential treatment option for DPN.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Lutein protects senescent ciliary muscle against oxidative stress through the Keap1/Nrf2/ARE pathway
    Gao, Ning
    Gao, Xiang
    Du, Miaomiao
    Xiang, Yongguo
    Zuo, Hangjia
    Huang, Rongxi
    Wan, Wenjuan
    Hu, Ke
    PHYTOMEDICINE, 2024, 134
  • [22] Exploring the molecular mechanism of Pandanus tectorius fruit extract in treating diabetic peripheral neuropathy via the Nrf2/Keap1 signalling pathway
    Zhang, JinGui
    Li, YuQing
    Wang, XiaoLi
    Wang, ShiSong
    Xue, XianMei
    Dong, LiWen
    Yao, JingChun
    Wang, Chao
    CURRENT SCIENCE, 2025, 128 (02): : 169 - 177
  • [23] Targeting Keap1/Nrf2/ARE signaling pathway in multiple sclerosis
    Michalickova, Danica
    Hrncir, Tomas
    Canova, Nikolina Kutinova
    Slanar, Ondrej
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2020, 873
  • [24] The Role of NRF2/KEAP1 Signaling Pathway in Cancer Metabolism
    Song, Moon-Young
    Lee, Da-Young
    Chun, Kyung-Soo
    Kim, Eun-Hee
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (09)
  • [25] Hydroxycitric acid prevents hyperoxaluric-induced nephrolithiasis and oxidative stress via activation of the Nrf2/Keap1 signaling pathway
    Yang, Bowei
    Wang, Guang
    Li, Yuhang
    Yang, Tongxin
    Guo, Haixiang
    Li, Pei
    Li, Jiongming
    CELL CYCLE, 2023, 22 (17) : 1884 - 1899
  • [26] ShengqingJiangzhuo capsule ameliorates diabetic nephropathy by improving Keap1/Nrf2 signaling pathway
    Yu, Yanna
    Li, Min
    Lai, Weijie
    Dong, Xin
    Zhang, Shu
    Zhang, Liangyou
    Chen, Gangyi
    JOURNAL OF PHARMACY AND PHARMACOLOGY, 2024, 76 (09) : 1149 - 1159
  • [27] KEAP1/NRF2 signaling pathway mutations in cervical cancer
    Chu, X-Y
    Li, Z-J
    Zheng, Z-W
    Tao, Y-L
    Zou, F-X
    Yang, X-F
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2018, 22 (14) : 4458 - 4466
  • [28] Bacillus amyloliquefaciens SC06 alleviates the oxidative stress of IPEC-1 via modulating Nrf2/Keap1 signaling pathway and decreasing ROS production
    Wang, Yang
    Wu, Yanping
    Wang, Yibing
    Fu, Aikun
    Gong, Li
    Li, Weifen
    Li, Yali
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2017, 101 (07) : 3015 - 3026
  • [29] Bacillus amyloliquefaciens SC06 alleviates the oxidative stress of IPEC-1 via modulating Nrf2/Keap1 signaling pathway and decreasing ROS production
    Yang Wang
    Yanping Wu
    Yibing Wang
    Aikun Fu
    Li Gong
    Weifen Li
    Yali Li
    Applied Microbiology and Biotechnology, 2017, 101 : 3015 - 3026
  • [30] Engeletin alleviates erastin-induced oxidative stress and protects against ferroptosis via Nrf2/Keap1 pathway in bone marrow mesenchymal stem cells
    Huang, Lei
    Bian, Mengxuan
    Lu, Shunyi
    Wang, Jiayi
    Yu, Jieqin
    Jiang, Libo
    Zhang, Jian
    TISSUE & CELL, 2023, 82