Penalized splines and reproducing kernel methods

被引:29
|
作者
Pearce, N. D. [1 ]
Wand, M. P. [1 ]
机构
[1] Univ New S Wales, Sch Math, Dept Stat, Sydney, NSW 2052, Australia
来源
AMERICAN STATISTICIAN | 2006年 / 60卷 / 03期
基金
澳大利亚研究理事会;
关键词
bioinformatics; classification; data mining; generalized additive models; kernel machines; machine learning; mixed models; reproducing kernel Hilbert spaces; semi-parametric regression; statistical learning; supervised learning; support vector machines;
D O I
10.1198/000313006X124541
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Two data analytic research areas-penalized splines and reproducing kernel methods-have become very vibrant since the mid-1990s. This article shows how the former can be embedded in the latter via theory for reproducing kernel Hilbert spaces. This connection facilitates cross-fertilization between the two bodies of research. In particular, connections between support vector machines and penalized splines are established. These allow for significant reductions in computational complexity, and easier incorporation of special structure such as additivity.
引用
收藏
页码:233 / 240
页数:8
相关论文
共 50 条
  • [31] Uniform convergence of penalized splines
    Xiao, Luo
    Nan, Zhe
    STAT, 2020, 9 (01):
  • [32] Optimal Penalized Function-on-Function Regression Under a Reproducing Kernel Hilbert Space Framework
    Sun, Xiaoxiao
    Du, Pang
    Wang, Xiao
    Ma, Ping
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (524) : 1601 - 1611
  • [33] A REPRODUCING KERNEL
    PEETRE, J
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1984, 3A (03): : 373 - 382
  • [34] Calculation of the Reproducing Kernel on the Reproducing Kernel Space with Weighted Integral
    Gao, Er
    Song, Songhe
    Zhang, Xinjian
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [35] New reproducing kernel functions in the reproducing kernel Sobolev spaces
    Akgul, Ali
    Akgul, Esra Karatas
    Korhan, Sahin
    AIMS MATHEMATICS, 2020, 5 (01): : 482 - 496
  • [36] Structural analysis with crack problems by Reproducing Kernel Particle Methods
    Gao, Zhengguo
    Liu, Guangting
    Jisuan Lixue Xuebao/Chinese Journal of Computational Mechanics, 2004, 21 (06): : 734 - 739
  • [37] Explicit reproducing kernel particle methods for large deformation problems
    Jun, S
    Liu, WK
    Belytschko, T
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1998, 41 (01) : 137 - 166
  • [38] Soft and hard classification by reproducing kernel Hilbert space methods
    Wahba, G
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (26) : 16524 - 16530
  • [39] On likelihood ratio testing for penalized splines
    Greven, Sonja
    Crainiceanu, Ciprian M.
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2013, 97 (04) : 387 - 402
  • [40] Dielectric function parameterization by penalized splines
    Likhachev, Dmitriy V.
    MODELING ASPECTS IN OPTICAL METROLOGY VI, 2017, 10330