From a Non-Markovian System to the Landau Equation

被引:3
|
作者
Velazquez, Juan J. L. [1 ]
Winter, Raphael [1 ]
机构
[1] Univ Bonn, Inst Appl Math, Endenicher Allee 60, D-53115 Bonn, Germany
关键词
SPATIALLY HOMOGENEOUS BOLTZMANN; KINETIC-EQUATION; PARTICLE-SYSTEMS; HARD POTENTIALS; LIMIT; EQUILIBRIUM; DERIVATION; STABILITY; EXISTENCE; PLASMA;
D O I
10.1007/s00220-018-3092-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we prove that in macroscopic times of order one, the solutions to the truncated BBGKY hierarchy (to second order) converge in the weak coupling limit to the solution of the nonlinear spatially homogeneous Landau equation. The truncated problem describes the formal leading order behavior of the underlying particle dynamics, and can be reformulated as a non-Markovian hyperbolic equation that converges to the Markovian evolution described by the parabolic Landau equation. The analysis in this paper is motivated by Bogolyubov's derivation of the kinetic equation by means of a multiple time scale analysis of the BBGKY hierarchy.
引用
收藏
页码:239 / 287
页数:49
相关论文
共 50 条
  • [1] From a Non-Markovian System to the Landau Equation
    Juan J. L. Velázquez
    Raphael Winter
    [J]. Communications in Mathematical Physics, 2018, 361 : 239 - 287
  • [2] THE EFFECT OF NON-MARKOVIAN TERMS ON THE LANDAU EQUATION
    MACPHERSON, AK
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1980, 371 (1746): : 381 - 392
  • [4] Non-Markovian Boltzmann equation
    Kremp, D
    Bonitz, M
    Kraeft, WD
    Schlanges, M
    [J]. ANNALS OF PHYSICS, 1997, 258 (02) : 320 - 359
  • [5] Non-Markovian stochastic Liouville equation
    Shushin, AI
    Sakun, VP
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 340 (1-3) : 283 - 291
  • [6] Non-Markovian dynamics of a qubit in a reservoir: different solutions of non-Markovian master equation
    Ding Bang-Fu
    Wang Xiao-Yun
    Tang Yan-Fang
    Mi Xian-Wu
    Zhao He-Ping
    [J]. CHINESE PHYSICS B, 2011, 20 (06)
  • [7] A SIMPLE NON-MARKOVIAN EQUATION FOR A MAGNETOPLASMA
    WOODS, LC
    [J]. NATURE, 1984, 307 (5952) : 614 - 616
  • [8] Non-Markovian stochastic Schrodinger equation
    Gaspard, P
    Nagaoka, M
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1999, 111 (13): : 5676 - 5690
  • [9] Classical non-Markovian Boltzmann equation
    Alexanian, Moorad
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (08)
  • [10] Solutions for a non-Markovian diffusion equation
    Lenzi, E. K.
    Evangelista, L. R.
    Lenzi, M. K.
    Ribeiro, H. V.
    de Oliveira, E. C.
    [J]. PHYSICS LETTERS A, 2010, 374 (41) : 4193 - 4198