From a Non-Markovian System to the Landau Equation

被引:3
|
作者
Velazquez, Juan J. L. [1 ]
Winter, Raphael [1 ]
机构
[1] Univ Bonn, Inst Appl Math, Endenicher Allee 60, D-53115 Bonn, Germany
关键词
SPATIALLY HOMOGENEOUS BOLTZMANN; KINETIC-EQUATION; PARTICLE-SYSTEMS; HARD POTENTIALS; LIMIT; EQUILIBRIUM; DERIVATION; STABILITY; EXISTENCE; PLASMA;
D O I
10.1007/s00220-018-3092-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we prove that in macroscopic times of order one, the solutions to the truncated BBGKY hierarchy (to second order) converge in the weak coupling limit to the solution of the nonlinear spatially homogeneous Landau equation. The truncated problem describes the formal leading order behavior of the underlying particle dynamics, and can be reformulated as a non-Markovian hyperbolic equation that converges to the Markovian evolution described by the parabolic Landau equation. The analysis in this paper is motivated by Bogolyubov's derivation of the kinetic equation by means of a multiple time scale analysis of the BBGKY hierarchy.
引用
收藏
页码:239 / 287
页数:49
相关论文
共 50 条
  • [21] Non-Markovian Speedup Dynamics in Markovian and Non-Markovian Channels
    Nie, Jing
    Liang, Yingshuang
    Wang, Biao
    Yang, Xiuyi
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (08) : 2889 - 2900
  • [22] From Markovian to non-Markovian persistence exponents
    Randon-Furling, J.
    [J]. EPL, 2015, 109 (04)
  • [23] Markovian semigroup from non-Markovian evolutions
    Wudarski, Filip A.
    Chruscinski, Dariusz
    [J]. PHYSICAL REVIEW A, 2016, 93 (04)
  • [24] Non-Markovian Effect in Optomechanical System
    Xin, Chun Yu
    Meng, Shu Sheng
    Zhou, Y. H.
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2018, 57 (06) : 1659 - 1670
  • [25] Non-Markovian Effect in Optomechanical System
    Chun Yu Xin
    Shu Sheng Meng
    Y. H. Zhou
    [J]. International Journal of Theoretical Physics, 2018, 57 : 1659 - 1670
  • [26] NON-MARKOVIAN RELAXATION OF A QUANTUM SYSTEM
    CATALDO, HM
    [J]. PHYSICA A, 1990, 165 (02): : 249 - 269
  • [27] Non-Markovian master equation for a damped driven two-state system
    Haikka, P.
    [J]. PHYSICA SCRIPTA, 2010, T140
  • [28] Stochastic Schrodinger equation for a non-Markovian dissipative qubit-qutrit system
    Jing, Jun
    Yu, Ting
    [J]. EPL, 2011, 96 (04)
  • [29] The non-Markovian stochastic Schrodinger equation unravelling for the position
    Gambetta, J
    Wiseman, HM
    [J]. JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2004, 6 (08) : S821 - S827
  • [30] From Markovian semigroup to non-Markovian quantum evolution
    Chruscinski, D.
    Kossakowski, A.
    [J]. EPL, 2012, 97 (02)