Developing Machine-Learned Potentials for Coarse-Grained Molecular Simulations: Challenges and Pitfalls

被引:5
|
作者
Ricci, Eleonora [1 ,2 ]
Giannakopoulos, George [1 ,3 ]
Karkaletsis, Vangelis [1 ]
Theodorou, Doros N. [4 ]
Vergadou, Niki [2 ]
机构
[1] Natl Ctr Sci Res Demokritos, Inst Informat & Telecommun, Athens, Greece
[2] Natl Ctr Sci Res Demokritos, Inst Nanosci & Nanotechnol, Athens, Greece
[3] SciFY P N P C, Athens, Greece
[4] Natl Tech Univ Athens, Sch Chem Engn, Athens, Greece
关键词
Coarse-graining; Molecular Simulations; Machine Learning; Neural Network Potential; Hierarchical Modelling;
D O I
10.1145/3549737.3549793
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Coarse graining (CG) enables the investigation of molecular properties for larger systems and at longer timescales than the ones attainable at the atomistic resolution. Machine learning techniques have been recently proposed to learn CG particle interactions, i.e. develop CG force fields. Graph representations of molecules and supervised training of a graph convolutional neural network architecture are used to learn the potential of mean force through a force matching scheme. In this work, the force acting on each CG particle is correlated to a learned representation of its local environment that goes under the name of SchNet, constructed via continuous filter convolutions. We explore the application of SchNet models to obtain a CG potential for liquid benzene, investigating the effect of model architecture and hyperparameters on the thermodynamic, dynamical, and structural properties of the simulated CG systems, reporting and discussing challenges encountered and future directions envisioned.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] A Coarse-Grained Model for Molecular Dynamics Simulations of Native Cellulose
    Wohlert, Jakob
    Berglund, Lars A.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2011, 7 (03) : 753 - 760
  • [42] Coarse-grained molecular dynamics simulations of a rotating bacterial flagellum
    Arkhipov, Anton
    Freddolino, Peter L.
    Imada, Katsumi
    Namba, Keiichi
    Schulten, Klaus
    [J]. BIOPHYSICAL JOURNAL, 2006, 91 (12) : 4589 - 4597
  • [43] Coarse-Grained Molecular Dynamics Simulations of Membrane Trehalose Interactions
    Kapla, Jon
    Stevensson, Baltzar
    Maliniak, Arnold
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2016, 120 (36): : 9621 - 9631
  • [44] Coarse-grained molecular dynamics simulations of nanopatterning with multivalent inks
    Cieplak, Marek
    Thompson, Damien
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (23):
  • [45] Coarse-grained molecular dynamics simulations of membrane proteins and peptides
    Bond, Peter J.
    Holyoake, John
    Ivetac, Anthony
    Khalid, Syma
    Sansom, Mark S. P.
    [J]. JOURNAL OF STRUCTURAL BIOLOGY, 2007, 157 (03) : 593 - 605
  • [46] Novel Coarse-Grained Model for Molecular Dynamics Simulations of DNA
    Karolak, Aleksandra
    van der Vaart, Arjan
    [J]. BIOPHYSICAL JOURNAL, 2014, 106 (02) : 804A - 804A
  • [47] Coarse-grained molecular dynamics simulations of photoswitchable assembly and disassembly
    Zheng, Xiaoyan
    Wang, Dong
    Shuai, Zhigang
    [J]. NANOSCALE, 2013, 5 (09) : 3681 - 3689
  • [48] Coarse-grained molecular dynamics simulations of ionic polymer networks
    T. E. Dirama
    V. Varshney
    K. L. Anderson
    J. A. Shumaker
    J. A. Johnson
    [J]. Mechanics of Time-Dependent Materials, 2008, 12 : 205 - 220
  • [49] Biomembranes in atomistic and coarse-grained simulations
    Pluhackova, Kristyna
    Boeckmann, Rainer A.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (32)
  • [50] Coarse-grained simulations of lipid bilayers
    Stevens, MJ
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (23): : 11942 - 11948