Partially Coherent Ambiguity Functions for Depth-variant Point Spread Function Design

被引:0
|
作者
Horstmeyer, Roarke [1 ]
Oh, Se Baek [2 ]
Gupta, Otkrist [1 ]
Raskar, Ramesh [1 ]
机构
[1] MIT, Media Lab, 75 Amherst St, Cambridge, MA 02139 USA
[2] MIT, Dept Engn Mech, Cambridge, MA 02139 USA
关键词
RECONSTRUCTION; FIELDS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The ambiguity function (AF) provides a convenient way to model how a camera with a modified aperture responds to defocus. We use the AF to design an optimal aperture distribution, which creates a depth-variant point spread function (PSF) from a sparse set of desired intensity patterns at different focal depths. Prior knowledge of the coherence state of the light is used to constrain the optimization in the mutual intensity domain. We use an assumption of spatially coherent light to design a fixed-pattern aperture mask. The concept of a dynamic aperture mask that displays several aperture patterns during one image exposure is also suggested, which is modeled under an assumption of partially coherent light. Parallels are drawn between the optimal aperture functions for this dynamic mask and the eigenmodes of a coherent mode decomposition. We demonstrate how the space of design for a 3D intensity distribution of light using partially coherent assumptions is less constrained than under coherent light assumptions.
引用
收藏
页码:267 / 272
页数:6
相关论文
共 50 条
  • [11] AMBIGUITY FUNCTION AS A DESIGN TOOL FOR HIGH FOCAL DEPTH
    OJEDACASTANEDA, J
    BERRIELVALDOS, LR
    MONTES, E
    APPLIED OPTICS, 1988, 27 (04): : 790 - 794
  • [12] Point-spread function in depleted and partially depleted CCDs
    Groom, DE
    Eberhard, PH
    Holland, SE
    Levi, ME
    Palaio, NP
    Perlmutter, S
    Stover, RJ
    Wei, M
    OPTICAL DETECTORS FOR ASTRONOMY II: STATE-OF-THE-ART AT THE TURN OF THE MILLENNIUM, 2000, 252 : 201 - 216
  • [13] Fluorescence microscopy three-dimensional depth variant point spread function interpolation using Zernike moments
    Maalouf, Elie
    Colicchio, Bruno
    Dieterlen, Alain
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2011, 28 (09) : 1864 - 1870
  • [14] Deriving instrumental point spread functions from partially occulted images
    Hofmeister, Stefan J.
    Hahn, Michael
    Savin, Daniel Wolf
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2022, 39 (12) : 2153 - 2168
  • [15] Point Spread Function Filtering for Radially Variant Blur Restoration
    Zhang, Yupeng
    Zimin, Lev G.
    Ji, Jing
    Ikezawa, Satoshi
    Ueda, Toshitsugu
    SENSORS AND MATERIALS, 2013, 25 (07) : 449 - 469
  • [16] Seismogram synthetizing in the depth-domain with point spread function
    Zhang J.
    Xu M.
    Ye Y.
    Wang Z.
    Wang Z.
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2019, 54 (04): : 875 - 881
  • [17] Design and Estimation of Coded Exposure Point Spread Functions
    McCloskey, Scott
    Ding, Yuanyuan
    Yu, Jingyi
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (10) : 2071 - 2077
  • [18] Space-variant point spread function measurement and interpolation at any depth based on single-pixel imaging
    Jiang, Hongzhi
    Wang, Yu
    Li, Xudong
    Zhao, Huijie
    Li, Yuxi
    OPTICS EXPRESS, 2020, 28 (07): : 9244 - 9258
  • [19] Reservoir Computing for Prediction of the Spatially-Variant Point Spread Function
    Weddell, Stephen J.
    Webb, Russell Y.
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2008, 2 (05) : 624 - 634
  • [20] Imaging Through Deconvolution with a Spatially-Variant Point Spread Function
    Novak, Kyle
    Watnik, Abbie T.
    COMPUTATIONAL IMAGING VI, 2021, 11731