Imaging Through Deconvolution with a Spatially-Variant Point Spread Function

被引:2
|
作者
Novak, Kyle [1 ]
Watnik, Abbie T. [2 ]
机构
[1] Tekla Res Inc, 10333 Southpoint Landing Blvd,Suite 207, Fredericksburg, VA 22407 USA
[2] US Naval Res Lab, 4555 Overlook Ave SW, Washington, DC 20375 USA
来源
COMPUTATIONAL IMAGING VI | 2021年 / 11731卷
关键词
RESTORATION;
D O I
10.1117/12.2585632
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We demonstrate a technique for restoring imagery using a computational imaging camera with a phase mask that produces a blurred, space-variant point spread function (PSF). To recover arbitrary images, we first calibrate the computational imaging process utilizing Karheunen-Loeve Decomposition, where the PSFs are sampled across the field of view of the camera system. These PSFs can be transformed into a series of spatially invariant "eigen-PSFs", each with an associated coefficient matrix. Thus the act of performing a spatially varying image deconvolution can be changed into a weighted sum of spatially invariant deconvolutions. After demonstrating this process on simulated data, we also show real-world results from a camera system modified with a diffractive waveplate, and provide a brief discussion on processing time and tradeoffs inherent to the technique.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Reservoir Computing for Prediction of the Spatially-Variant Point Spread Function
    Weddell, Stephen J.
    Webb, Russell Y.
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2008, 2 (05) : 624 - 634
  • [2] Deconvolution with a spatially-variant PSF
    Lauer, TR
    ASTRONOMICAL DATA ANALYSIS II, 2002, 4847 : 167 - 173
  • [3] Spatially-Variant CNN-Based Point Spread Function Estimation for Blind Deconvolution and Depth Estimation in Optical Microscopy
    Shajkofci, Adrian
    Liebling, Michael
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 5848 - 5861
  • [4] SEMI-BLIND SPATIALLY-VARIANT DECONVOLUTION IN OPTICAL MICROSCOPY WITH LOCAL POINT SPREAD FUNCTION ESTIMATION BY USE OF CONVOLUTIONAL NEURAL NETWORKS
    Shajkofci, Adrian
    Liebling, Michael
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 3818 - 3822
  • [5] Multiple-image deblurring with spatially-variant point spread functions
    Vio, R. (robertovio@tin.it), 1600, EDP Sciences (434):
  • [6] Spatially-variant image deconvolution for photoacoustic tomography
    Xie, Dan
    Dong, Wende
    Zheng, Jiawei
    Tian, Chao
    OPTICS EXPRESS, 2023, 31 (13): : 21641 - 21657
  • [7] Multiple-image deblurring with spatially-variant point spread functions
    Vio, R
    Nagy, J
    Wamsteker, A
    ASTRONOMY & ASTROPHYSICS, 2005, 434 (02) : 795 - U23
  • [8] RESTORATION OF ULTRASOUND IMAGES USING SPATIALLY-VARIANT KERNEL DECONVOLUTION
    Florea, Mihai I.
    Basarab, Adrian
    Kouame, Denis
    Vorobyov, Sergiy A.
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 796 - 800
  • [9] The spatially-variant backprojection point kernel function of an energy-subtraction Compton scatter camera for medical imaging
    Rohe, RC
    Sharfi, MM
    Kecevar, KA
    Valentine, JD
    Bonnerave, C
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1997, 44 (06) : 2477 - 2482
  • [10] Spatially-variant backprojection point kernel function of an energy-subtraction Compton scatter camera for medical imaging
    Rohe, R.C.
    Sharfi, M.M.
    Kecevar, K.A.
    Valentine, J.D.
    Bonnerave, C.
    IEEE Transactions on Nuclear Science, 1997, 44 (6 pt 2): : 2477 - 2482