Speeding Up Optimum-Path Forest Training by Path-cost Propagation

被引:0
|
作者
Iwashita, Adriana S. [1 ]
Papa, Joao P. [1 ]
Falcao, Alexandre X. [2 ]
Lotufo, Roberto A.
de Araujo Oliveira, Victor M. [3 ]
Costa de Albuquerque, Victor H. [4 ]
Tavares, Joao Manuel R. S. [5 ]
机构
[1] Sao Paulo State Univ, Dept Comp, Bauru, Brazil
[2] Univ Estadual Campinas, Inst Comp, Campinas, SP, Brazil
[3] Univ Estadual Campinas, Sch Elect & Comp Engn, Campinas, SP, Brazil
[4] Univ Fortaleza, Ctr Technol Sci, Fortaleza, Ceara, Brazil
[5] Univ Porto, Fac Engn, P-4100 Porto, Portugal
基金
巴西圣保罗研究基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we present an optimization of the Optimum-Path Forest classifier training procedure, which is based on a theoretical relationship between minimum spanning forest and optimum-path forest for a specific path-cost function. Experiments on public datasets have shown that the proposed approach can obtain similar accuracy to the traditional one hut with faster data training.
引用
收藏
页码:1233 / 1236
页数:4
相关论文
共 50 条
  • [21] AUTOMATIC LANDSLIDE RECOGNITION THROUGH OPTIMUM-PATH FOREST
    Pisani, R.
    Riedel, P.
    Costa, K.
    Nakamura, R.
    Pereira, C.
    Rosa, G.
    Papa, J.
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 6228 - 6231
  • [22] Optimum-Path Forest Applied for Breast Masses Classification
    Ribeiro, Patricia B.
    da Costa, Kelton A. P.
    Papa, Joao P.
    Romero, Roseli A. F.
    2014 IEEE 27TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2014, : 52 - 55
  • [23] Blur Parameter Identification Through Optimum-Path Forest
    Pires, Rafael G.
    Fernandes, Silas E. N.
    Papa, Joao Paulo
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS: 17TH INTERNATIONAL CONFERENCE, CAIP 2017, PT II, 2017, 10425 : 230 - 240
  • [24] Semi-Supervised Self-Training Method Based on an Optimum-Path Forest
    Li, Junnan
    Zhu, Qingsheng
    IEEE ACCESS, 2019, 7 : 36388 - 36399
  • [25] Pattern Analysis in Drilling Reports using Optimum-Path Forest
    Sousa, G. J.
    Pedronette, D. C. G.
    Baldassin, A.
    Privatto, P. I. M.
    Gaseta, M.
    Guilherme, I. R.
    Colombo Cenpes, D.
    Afonso, L. C. S.
    Papa, J. P.
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [26] Static Video Summarization through Optimum-Path Forest Clustering
    Martins, G. B.
    Afonso, L. C. S.
    Osaku, D.
    Almeida, Jurandy
    Papa, J. P.
    PROGRESS IN PATTERN RECOGNITION IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2014, 2014, 8827 : 893 - 900
  • [27] Multiple-Instance Learning through Optimum-Path Forest
    Afonso, Luis C. S.
    Colombo, Danilo
    Pereira, Clayton R.
    Costa, Kelton A. P.
    Papa, Joao P.
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [28] Enhancing Brain Storm Optimization Through Optimum-Path Forest
    Sugi Afonso, Luis Claudio
    Passos, Leandro, Jr.
    Papa, Joao Paulo
    2018 IEEE 12TH INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS (SACI), 2018, : 183 - 188
  • [29] An Optimum-Path Forest framework for intrusion detection in computer networks
    Pereira, Clayton R.
    Nakamura, Rodrigo Y. M.
    Costa, Kelton A. P.
    Papa, Joao P.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2012, 25 (06) : 1226 - 1234
  • [30] Efficient supervised optimum-path forest classification for large datasets
    Papa, Joao P.
    Falcao, Alexandre X.
    de Albuquerque, Victor Hugo C.
    Tavares, Joao Manuel R. S.
    PATTERN RECOGNITION, 2012, 45 (01) : 512 - 520