On the nonlinear stability of symplectic integrators

被引:11
|
作者
McLachlan, RI [1 ]
Perlmutter, M
Quispel, GRW
机构
[1] Massey Univ, Inst Fundamental Sci, Palmerston North, New Zealand
[2] La Trobe Univ, Dept Math, Melbourne, Vic 3083, Australia
基金
澳大利亚研究理事会;
关键词
symplectic integrators; stability; backward error analysis;
D O I
10.1023/B:BITN.0000025088.13092.7f
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The modified Hamiltonian is used to study the nonlinear stability of symplectic integrators, especially for nonlinear oscillators. We give conditions under which an initial condition on a compact energy surface will remain bounded for exponentially long times for sufficiently small time steps. While this is easy to achieve for non-critical energy surfaces, in some cases it can also be achieved for critical energy surfaces (those containing critical points of the Hamiltonian). For example, the implicit midpoint rule achieves this for the critical energy surface of the Henon-Heiles system, while the leapfrog method does not. We construct explicit methods which are nonlinearly stable for all simple mechanical systems for exponentially long times. We also address questions of topological stability, finding conditions under which the original and modified energy surfaces are topologically equivalent.
引用
收藏
页码:99 / 117
页数:19
相关论文
共 50 条
  • [41] SYMPLECTIC INTEGRATORS FOR INDEX 1 CONSTRAINTS
    McLachlan, Robert I.
    Modin, Klas
    Verdier, Olivier
    Wilkins, Matt
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (05): : A2150 - A2162
  • [42] BUTCHERS SIMPLIFYING ASSUMPTION FOR SYMPLECTIC INTEGRATORS
    SAITO, S
    SUGIURA, H
    MITSUI, T
    BIT, 1992, 32 (02): : 345 - 349
  • [43] Symplectic integrators with adaptive time steps
    Richardson, A. S.
    Finn, J. M.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2012, 54 (01)
  • [44] Multi-symplectic variational integrators for nonlinear Schrdinger equations with variable coefficients
    廖翠萃
    崔金超
    梁久祯
    丁效华
    Chinese Physics B, 2016, (01) : 423 - 431
  • [45] Dedicated symplectic integrators for rotation motions
    Laskar, Jacques
    Vaillant, Timothee
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2019, 131 (03):
  • [46] Symplectic Integrators: Rotations and Roundoff Errors
    Jean-Marc Petit
    Celestial Mechanics and Dynamical Astronomy, 1998, 70 : 1 - 21
  • [47] Symplectic integrators for the multichannel schroedinger equation
    Manolopoulos, David E.
    Gray, Stephen K.
    Journal of Chemical Physics, 1995, 102 (23):
  • [48] A CLASS OF EXPLICIT RATIONAL SYMPLECTIC INTEGRATORS
    Fang, Yonglei
    Li, Qinghong
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2012, 2 (02): : 161 - 171
  • [49] Dedicated symplectic integrators for rotation motions
    Jacques Laskar
    Timothée Vaillant
    Celestial Mechanics and Dynamical Astronomy, 2019, 131
  • [50] Symplectic integrators for the multilevel Redfield equation
    Kalyanaraman, C
    Evans, DG
    CHEMICAL PHYSICS LETTERS, 2000, 324 (5-6) : 459 - 465