MAXIMUM ENTROPY ESTIMATION OF THE PROBABILITY DENSITY FUNCTION FROM THE HISTOGRAM USING ORDER STATISTIC CONSTRAINTS

被引:0
|
作者
Kirlin, R. Lynn [1 ]
Reza, Ali M. [2 ]
机构
[1] Univ Victoria, Dept Elect Engn, Victoria, BC, Canada
[2] US Coast Guard Acad, Dept Engn, New London, CT USA
关键词
estimation of probability density function; maximum entropy; order statistics; histogram;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
An analytical expression for a probability density is usually required in detection and estimation problems, yet it is usually only assumed or selected from contenders by parameter estimation, or the histogram is smoothed with an arbitrary window function. In contrast, given a histogram containing R sample points, we derive a nonlinear differential equation (NDEQ) whose solution is a maximum entropy density given constraints that arise from assumptions that the samples are means of the order statistics of the parent distribution. We solve the NDEQ for R=1 and approximate the solution for general R using the fact that order means partition the density into equal probability regions, which we require to independently be maximum entropy. Finally we show with a Rayleigh density example what errors may result.
引用
收藏
页码:6407 / 6410
页数:4
相关论文
共 50 条
  • [31] Maximum entropy from the laws of probability
    Garrett, AJM
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, PT 2, 2001, 568 : 3 - 22
  • [32] Semiparametric maximum likelihood probability density estimation
    Kwasniok, Frank
    PLOS ONE, 2021, 16 (11):
  • [33] Application of maximum entropy probability density estimation approach to constituting oil monitoring diagnostic criterions
    Huo, H
    Li, ZG
    Xia, YC
    TRIBOLOGY INTERNATIONAL, 2006, 39 (06) : 528 - 532
  • [34] ENTROPY ESTIMATION USING THE PRINCIPLE OF MAXIMUM ENTROPY
    Behmardi, Behrouz
    Raich, Raviv
    Hero, Alfred O., III
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 2008 - 2011
  • [35] Probability Function Estimation for the Maximum Precipitation Model Using Kernel Estimators
    Karczewski, Maciej
    Kazmierczak, Bartosz
    Michalski, Andrzej
    Kuchar, Leszek
    ROCZNIK OCHRONA SRODOWISKA, 2022, 24 : 260 - 275
  • [36] Nonparametric Probability Density Function Estimation Using the Padé Approximation
    Aghamiri, Hamid Reza
    Hosseini, S. Abolfazl
    Green, James R.
    Oommen, B. John
    ALGORITHMS, 2025, 18 (02)
  • [37] Probability density function estimation using orthogonal forward regression
    Chen, S.
    Hong, X.
    Harris, C. J.
    2007 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-6, 2007, : 2491 - +
  • [38] Probability density estimation using adaptive activation function neurons
    Fiori, S
    Bucciarelli, P
    NEURAL PROCESSING LETTERS, 2001, 13 (01) : 31 - 42
  • [39] Probability Density Estimation Using Adaptive Activation Function Neurons
    Simone Fiori
    Paolo Bucciarelli
    Neural Processing Letters, 2001, 13 : 31 - 42
  • [40] Estimation of a probability density function using interval aggregated data
    Huang, Jianhua Z.
    Wang, Xueying
    Wu, Ximing
    Zhou, Lan
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (15) : 3093 - 3105