Semiparametric maximum likelihood probability density estimation

被引:2
|
作者
Kwasniok, Frank [1 ]
机构
[1] Univ Exeter, Dept Math, Exeter, Devon, England
来源
PLOS ONE | 2021年 / 16卷 / 11期
基金
英国自然环境研究理事会;
关键词
BANDWIDTH SELECTION; ENTROPY; APPROXIMATION; DISTRIBUTIONS; MODEL;
D O I
10.1371/journal.pone.0259111
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A comprehensive methodology for semiparametric probability density estimation is introduced and explored. The probability density is modelled by sequences of mostly regular or steep exponential families generated by flexible sets of basis functions, possibly including boundary terms. Parameters are estimated by global maximum likelihood without any roughness penalty. A statistically orthogonal formulation of the inference problem and a numerically stable and fast convex optimization algorithm for its solution are presented. Automatic model selection over the type and number of basis functions is performed with the Bayesian information criterion. The methodology can naturally be applied to densities supported on bounded, infinite or semi-infinite domains without boundary bias. Relationships to the truncated moment problem and the moment-constrained maximum entropy principle are discussed and a new theorem on the existence of solutions is contributed. The new technique compares very favourably to kernel density estimation, the diffusion estimator, finite mixture models and local likelihood density estimation across a diverse range of simulation and observation data sets. The semiparametric estimator combines a very small mean integrated squared error with a high degree of smoothness which allows for a robust and reliable detection of the modality of the probability density in terms of the number of modes and bumps.
引用
收藏
页数:33
相关论文
共 50 条