Dephasing processes in InGaAs quantum dots and quantum-dot molecules

被引:0
|
作者
Borri, P [1 ]
Langbein, W [1 ]
Schneider, S [1 ]
Woggon, U [1 ]
Schwab, M [1 ]
Bayer, M [1 ]
Sellin, RL [1 ]
Ouyang, D [1 ]
Bimberg, D [1 ]
Fafard, S [1 ]
Wasilewski, Z [1 ]
Hawrylak, P [1 ]
机构
[1] Univ Dortmund, D-44221 Dortmund, Germany
关键词
semiconductor nanostructures; coherent optical spectroscopy; ultrafast dynamics; excitons and phonons;
D O I
10.1117/12.531544
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The dephasing time in semiconductor quantum dots and quantum-dot molecules is measured using a sensitive four-wave mixing heterodyne technique. We find a dephasing time of several hundred picoseconds at low temperature in the ground-state transition of strongly-confined InGaAs quantum dots, approaching the radiative-lifetime limit. Between 7K and 100K the polarization decay has two distinct components resulting in a non-Lorentzian lineshape with a zero-phonon line and a broad band from elastic exciton-acoustic phonon interactions. On a series of InAs/GaAs quantum-dot molecules having different interdot barrier thicknesses a systematic dependence of the dephasing dynamics on the barrier thickness is observed. The results show how the quantum mechanical coupling of the electronic wavefunctions in the molecules affects both the exciton radiative lifetime and the exciton-acoustic phonon interaction.
引用
下载
收藏
页码:96 / 107
页数:12
相关论文
共 50 条
  • [31] Spectral analysis of InGaAs/GaAs quantum-dot lasers
    Smowton, PM
    Johnston, EJ
    Dewar, SV
    Hulyer, PJ
    Summers, HD
    Patanè, A
    Polimeni, A
    Henini, M
    APPLIED PHYSICS LETTERS, 1999, 75 (15) : 2169 - 2171
  • [32] Linewidth enhancement factor in InGaAs quantum-dot amplifiers
    Schneider, S
    Borri, P
    Langbein, W
    Woggon, U
    Sellin, RL
    Ouyang, D
    Bimberg, D
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2004, 40 (10) : 1423 - 1429
  • [33] Quantum-dot devices and quantum-dot cellular automata
    Porod, W
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1997, 334B (5-6): : 1147 - 1175
  • [34] Quantum-dot devices and quantum-dot cellular automata
    Porod, W
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (10): : 2199 - 2218
  • [35] Self-assembled quantum dots, wires and quantum-dot lasers
    Wang, ZG
    Chen, YH
    Liu, FQ
    Xu, B
    JOURNAL OF CRYSTAL GROWTH, 2001, 227 : 1132 - 1139
  • [36] Excitonic molecules in InGaAs/GaAs quantum dots
    Kulakovskii, VD
    Bayer, M
    Michel, M
    Forchel, A
    Gutbrod, T
    Faller, F
    USPEKHI FIZICHESKIKH NAUK, 1998, 168 (02): : 123 - 127
  • [37] Realization of quantum-dot cellular automata using semiconductor quantum dots
    Smith, CG
    Gardelis, S
    Rushforth, AW
    Crook, R
    Cooper, J
    Ritchie, DA
    Linfield, EH
    Jin, Y
    Pepper, M
    SUPERLATTICES AND MICROSTRUCTURES, 2003, 34 (3-6) : 195 - 203
  • [38] Electronic structure of quantum-dot molecules and solids
    Bryant, GW
    Jaskolski, W
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2002, 13 (2-4): : 293 - 296
  • [39] Topological boundary states in engineered quantum-dot molecules on the InAs(111)A surface: Odd numbers of quantum dots
    Pham, Van Dong
    Pan, Yi
    Erwin, Steven C.
    Von Oppen, Felix
    Kanisawa, Kiyoshi
    Fölsch, Stefan
    Physical Review Research, 2024, 6 (03):
  • [40] Spin-dephasing processes in semiconductor quantum dots
    Khaetskii, AV
    Nazarov, YV
    PHYSICA E, 2000, 6 (1-4): : 470 - 473