Lipschitz Modulus of the Optimal Value in Linear Programming

被引:4
|
作者
Jesus Gisbert, Maria [1 ]
Josefa Canovas, Maria [1 ]
Parra, Juan [1 ]
Javier Toledo, Fco [1 ]
机构
[1] Miguel Hernandez Univ Elche, Ctr Operat Res, Alicante 03202, Spain
关键词
Lipschitz modulus; Optimal value; Linear programming; Variational analysis; Calmness;
D O I
10.1007/s10957-018-01456-w
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The present paper is devoted to the computation of the Lipschitz modulus of the optimal value function restricted to its domain in linear programming under different types of perturbations. In the first stage, we study separately perturbations of the right-hand side of the constraints and perturbations of the coefficients of the objective function. Secondly, we deal with canonical perturbations, i.e., right-hand side perturbations together with linear perturbations of the objective. We advance that an exact formula for the Lipschitz modulus in the context of right-hand side perturbations is provided, and lower and upper estimates for the corresponding moduli are also established in the other two perturbation frameworks. In both cases, the corresponding upper estimates are shown to provide the exact moduli when the nominal (original) optimal set is bounded. A key strategy here consists in taking advantage of the background on calmness in linear programming and providing the aimed Lipschitz modulus through the computation of a uniform calmness constant.
引用
收藏
页码:133 / 152
页数:20
相关论文
共 50 条
  • [21] Two Optimal Value Functions in Parametric Conic Linear Programming
    Nguyen Ngoc Luan
    Do Sang Kim
    Nguyen Dong Yen
    Journal of Optimization Theory and Applications, 2022, 193 : 574 - 597
  • [22] Lipschitz continuity of the optimal value via bounds on the optimal set in linear semi-infinite optimization
    Canovas, Maria J.
    Lopez, Marco A.
    Parra, Juan
    Toledo, F. Javier
    MATHEMATICS OF OPERATIONS RESEARCH, 2006, 31 (03) : 478 - 489
  • [23] The Optimal Value Bounds of the Objective Function in the Interval Linear Programming Problem
    Allahdadi, Mehdi
    Nehi, Hassan Mishmast
    CHIANG MAI JOURNAL OF SCIENCE, 2015, 42 (02): : 501 - 511
  • [24] Interval linear fractional programming: optimal value range of the objective function
    Salary Pour Sharif Abad, Fatemeh
    Allahdadi, Mehdi
    Mishmast Nehi, Hasan
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (04):
  • [25] Interval linear fractional programming: optimal value range of the objective function
    Fatemeh Salary Pour Sharif Abad
    Mehdi Allahdadi
    Hasan Mishmast Nehi
    Computational and Applied Mathematics, 2020, 39
  • [26] Lipschitz modulus of linear and convex inequality systems with the Hausdorff metric
    G. Beer
    M. J. Cánovas
    M. A. López
    J. Parra
    Mathematical Programming, 2021, 189 : 75 - 98
  • [27] Lipschitz modulus of linear and convex inequality systems with the Hausdorff metric
    Beer, G.
    Canovas, M. J.
    Lopez, M. A.
    Parra, J.
    MATHEMATICAL PROGRAMMING, 2021, 189 (1-2) : 75 - 98
  • [28] Lipschitz Continuity of the Value Function in Optimal Control
    V. M. Veliov
    Journal of Optimization Theory and Applications, 1997, 94 : 335 - 363
  • [29] Lipschitz continuity of the value function in optimal control
    Veliov, VM
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1997, 94 (02) : 335 - 363
  • [30] THE MODULUS PROBLEM OF PIECEWISE-LINEAR PROGRAMMING
    GABASOV, R
    KIRILLOVA, FM
    PRISHCHEPOVA, SV
    DOKLADY AKADEMII NAUK BELARUSI, 1990, 34 (04): : 309 - 312