Lipschitz Modulus of the Optimal Value in Linear Programming

被引:4
|
作者
Jesus Gisbert, Maria [1 ]
Josefa Canovas, Maria [1 ]
Parra, Juan [1 ]
Javier Toledo, Fco [1 ]
机构
[1] Miguel Hernandez Univ Elche, Ctr Operat Res, Alicante 03202, Spain
关键词
Lipschitz modulus; Optimal value; Linear programming; Variational analysis; Calmness;
D O I
10.1007/s10957-018-01456-w
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The present paper is devoted to the computation of the Lipschitz modulus of the optimal value function restricted to its domain in linear programming under different types of perturbations. In the first stage, we study separately perturbations of the right-hand side of the constraints and perturbations of the coefficients of the objective function. Secondly, we deal with canonical perturbations, i.e., right-hand side perturbations together with linear perturbations of the objective. We advance that an exact formula for the Lipschitz modulus in the context of right-hand side perturbations is provided, and lower and upper estimates for the corresponding moduli are also established in the other two perturbation frameworks. In both cases, the corresponding upper estimates are shown to provide the exact moduli when the nominal (original) optimal set is bounded. A key strategy here consists in taking advantage of the background on calmness in linear programming and providing the aimed Lipschitz modulus through the computation of a uniform calmness constant.
引用
收藏
页码:133 / 152
页数:20
相关论文
共 50 条
  • [1] Lipschitz Modulus of the Optimal Value in Linear Programming
    María Jesús Gisbert
    María Josefa Cánovas
    Juan Parra
    Fco. Javier Toledo
    Journal of Optimization Theory and Applications, 2019, 182 : 133 - 152
  • [2] Projection-Based Local and Global Lipschitz Moduli of the Optimal Value in Linear Programming
    Canovas, M. J.
    Gisbert, M. J.
    Klatte, D.
    Parra, J.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 193 (1-3) : 280 - 299
  • [3] Projection-Based Local and Global Lipschitz Moduli of the Optimal Value in Linear Programming
    M. J. Cánovas
    M. J. Gisbert
    D. Klatte
    J. Parra
    Journal of Optimization Theory and Applications, 2022, 193 : 280 - 299
  • [4] CALMNESS OF THE OPTIMAL VALUE IN LINEAR PROGRAMMING
    Gisbert, M. J.
    Canovas, M. J.
    Parra, J.
    Toledo, F. J.
    SIAM JOURNAL ON OPTIMIZATION, 2018, 28 (03) : 2201 - 2221
  • [5] Optimal value range in interval linear programming
    Milan Hladík
    Fuzzy Optimization and Decision Making, 2009, 8 : 283 - 294
  • [6] Optimal value range in interval linear programming
    Hladik, Milan
    FUZZY OPTIMIZATION AND DECISION MAKING, 2009, 8 (03) : 283 - 294
  • [7] The Shape of the Optimal Value of a Fuzzy Linear Programming Problem
    Hladik, Milan
    Cerny, Michal
    FUZZY LOGIC IN INTELLIGENT SYSTEM DESIGN: THEORY AND APPLICATIONS, 2018, 648 : 281 - 286
  • [8] Bounds on the worst optimal value in interval linear programming
    Mohsen Mohammadi
    Monica Gentili
    Soft Computing, 2019, 23 : 11055 - 11061
  • [9] The inverse optimal value problem for linear fractional programming
    Nadi, Sina
    Lee, Taewoo
    Prokopyev, Oleg A.
    OPERATIONS RESEARCH LETTERS, 2025, 59
  • [10] COMPUTING BOUNDS FOR OPTIMAL VALUE IN LINEAR-PROGRAMMING
    KALLIO, M
    NAVAL RESEARCH LOGISTICS, 1977, 24 (02) : 301 - 308