The Majority of the Type III Effector Inventory of Pseudomonas syringae pv. tomato DC3000 Can Suppress Plant Immunity

被引:202
|
作者
Guo, Ming [1 ,2 ]
Tian, Fang [1 ,3 ]
Wamboldt, Yashitola [1 ]
Alfano, James R. [1 ,2 ]
机构
[1] Univ Nebraska, Ctr Plant Sci Innovat, Lincoln, NE 68588 USA
[2] Univ Nebraska, Dept Plant Pathol, Lincoln, NE 68588 USA
[3] Univ Nebraska, Sch Biol Sci, Lincoln, NE 68588 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
PROTEIN SECRETION SYSTEM; PROGRAMMED CELL-DEATH; DISEASE RESISTANCE GENES; GRAM-NEGATIVE BACTERIA; INNATE IMMUNITY; ARABIDOPSIS-THALIANA; HYPERSENSITIVE RESPONSE; TYROSINE-PHOSPHATASE; SALMONELLA-TYPHIMURIUM; ESCHERICHIA-COLI;
D O I
10.1094/MPMI-22-9-1069
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Pseudomonas syringae type III protein secretion system (T3SS) and the type III effectors it injects into plant cells are required for plant pathogenicity and the ability to elicit a hypersensitive response (HR). The HR is a programmed cell death that is associated with effector-triggered immunity (ETI). A primary function of P. syringae type III effectors appears to be the suppression of ETI and pathogen-associated molecular pattern-triggered immunity (PTI), which is induced by conserved molecules on microorganisms. We reported that seven type III effectors from P. syringae pv. tomato DC3000 were capable of suppressing an HR induced by P. fluorescens(pHIR11) and have now tested 35 DC3000 type III effectors in this assay, finding that the majority of them can suppress the HR induced by HopA1. One newly identified type III effector with particularly strong HR suppression activity was HopS2. We used the pHIR11 derivative pLN1965, which lacks hopA1, in related assays and found that a subset of the type III effectors that suppressed HopA1-induced ETI also suppressed an ETI response induced by AvrRpm1 in Arabidopsis thaliana. A. thaliana plants expressing either HopAO1 or HopF2, two type III effectors that suppressed the HopA1-induced HR, were reduced in the flagellin-induced PTI response as well as PTI induced by other PAMPs and allowed enhanced in planta growth of P. syringae. Collectively, our results suggest that the majority of DC3000 type III effectors can suppress plant immunity. Additionally, the construct pLN1965 will likely be a useful tool in determining whether other type III effectors or effectors from other types of pathogens can suppress either ETI, PTI, or both.
引用
收藏
页码:1069 / 1080
页数:12
相关论文
共 50 条
  • [41] Environmental alkalization suppresses deployment of virulence strategies in Pseudomonas syringae pv. tomato DC3000
    Yang, Zichu
    Wang, Haibi
    Keebler, Robert
    Lovelace, Amelia
    Chen, Hsiao-Chun
    Kvitko, Brian
    Swingle, Bryan
    JOURNAL OF BACTERIOLOGY, 2024, 206 (11)
  • [42] Regulons of Three Pseudomonas syringae pv. tomato DC3000 Iron Starvation Sigma Factors
    Markel, Eric
    Butcher, Bronwyn G.
    Myers, Christopher R.
    Stodghill, Paul
    Cartinhour, Sam
    Swingle, Bryan
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2013, 79 (02) : 725 - 727
  • [43] Analysis of the Structure and Biosynthesis of the Lipopolysaccharide Core Oligosaccharide of Pseudomonas syringae pv. tomato DC3000
    Kutschera, Alexander
    Schombel, Ursula
    Schwudke, Dominik
    Ranf, Stefanie
    Gisch, Nicolas
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (06)
  • [44] Role of recombination in the evolution of the model plant pathogen Pseudomonas syringae pv. tomato DC3000, a very atypical tomato strain
    Yan, Shuangchun
    Liu, Haijie
    Mohr, Toni J.
    Jenrette, Jenny
    Chiodini, Rossella
    Zaccardelli, Massimo
    Setubal, Joao C.
    Vinatzer, Boris A.
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2008, 74 (10) : 3171 - 3181
  • [45] AefR transcription factor negatively regulates the virulence of Pseudomonas syringae pv. tomato DC3000
    Ishiga, T.
    Ishiga, Y.
    Kiyokawa, T.
    Maruyama, N.
    Betsuyaku, S.
    Ichinose, Y.
    Nomura, N.
    PHYTOPATHOLOGY, 2017, 107 (12) : 83 - 83
  • [46] Structure of 2-haloacid dehalogenase from Pseudomonas syringae pv. tomato DC3000
    Hou, Zhiqiang
    Zhang, Hongmei
    Li, Mei
    Chang, Wenrui
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2013, 69 : 1108 - 1114
  • [47] Characterizing the role of TvrR during pathogenesis of Pseudomonas syringae pv. tomato strain DC3000
    Lee, C. Y.
    Kunkel, B. N.
    MOLECULAR PLANT-MICROBE INTERACTIONS, 2021, 34 (12) : 16 - 17
  • [48] Regulation of coronatine in P-syringae pv. tomato DC3000
    Sreedharan, A.
    Bender, C. L.
    PHYTOPATHOLOGY, 2004, 94 (06) : S97 - S97
  • [49] Genomic mining for substrates of the type III secretion system of Pseudomonas syringae pv. tomato DC3000:: New insights into mechanisms of pathogenesis
    Alfano, JR
    Buell, CR
    Chancey, ST
    Collmer, A
    Espinosa, A
    Guo, M
    Hanks, M
    Jamir, Y
    Janes, MD
    Schneider, DJ
    Shan, L
    Petnicki-Ocwieja, T
    Schechter, LM
    Tam, VC
    Tang, X
    PSEUDOMONAS SYRINGAE AND RELATED PATHOGENS: BIOLOGY AND GENETICS, 2003, : 363 - 372
  • [50] Inhibition of the type III secretion system of Pseudomonas syringae pv. tomato DC3000 by resveratrol oligomers identified in Vitis vinifera L
    Kang, Ji Eun
    Jeon, Byeong Jun
    Park, Min Young
    Yang, Hye Ji
    Kwon, Jae Young
    Lee, Dong Ho
    Kim, Beom Seok
    PEST MANAGEMENT SCIENCE, 2020, 76 (07) : 2294 - 2303