The Majority of the Type III Effector Inventory of Pseudomonas syringae pv. tomato DC3000 Can Suppress Plant Immunity

被引:202
|
作者
Guo, Ming [1 ,2 ]
Tian, Fang [1 ,3 ]
Wamboldt, Yashitola [1 ]
Alfano, James R. [1 ,2 ]
机构
[1] Univ Nebraska, Ctr Plant Sci Innovat, Lincoln, NE 68588 USA
[2] Univ Nebraska, Dept Plant Pathol, Lincoln, NE 68588 USA
[3] Univ Nebraska, Sch Biol Sci, Lincoln, NE 68588 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
PROTEIN SECRETION SYSTEM; PROGRAMMED CELL-DEATH; DISEASE RESISTANCE GENES; GRAM-NEGATIVE BACTERIA; INNATE IMMUNITY; ARABIDOPSIS-THALIANA; HYPERSENSITIVE RESPONSE; TYROSINE-PHOSPHATASE; SALMONELLA-TYPHIMURIUM; ESCHERICHIA-COLI;
D O I
10.1094/MPMI-22-9-1069
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Pseudomonas syringae type III protein secretion system (T3SS) and the type III effectors it injects into plant cells are required for plant pathogenicity and the ability to elicit a hypersensitive response (HR). The HR is a programmed cell death that is associated with effector-triggered immunity (ETI). A primary function of P. syringae type III effectors appears to be the suppression of ETI and pathogen-associated molecular pattern-triggered immunity (PTI), which is induced by conserved molecules on microorganisms. We reported that seven type III effectors from P. syringae pv. tomato DC3000 were capable of suppressing an HR induced by P. fluorescens(pHIR11) and have now tested 35 DC3000 type III effectors in this assay, finding that the majority of them can suppress the HR induced by HopA1. One newly identified type III effector with particularly strong HR suppression activity was HopS2. We used the pHIR11 derivative pLN1965, which lacks hopA1, in related assays and found that a subset of the type III effectors that suppressed HopA1-induced ETI also suppressed an ETI response induced by AvrRpm1 in Arabidopsis thaliana. A. thaliana plants expressing either HopAO1 or HopF2, two type III effectors that suppressed the HopA1-induced HR, were reduced in the flagellin-induced PTI response as well as PTI induced by other PAMPs and allowed enhanced in planta growth of P. syringae. Collectively, our results suggest that the majority of DC3000 type III effectors can suppress plant immunity. Additionally, the construct pLN1965 will likely be a useful tool in determining whether other type III effectors or effectors from other types of pathogens can suppress either ETI, PTI, or both.
引用
收藏
页码:1069 / 1080
页数:12
相关论文
共 50 条
  • [21] The hrp pathogenicity island of Pseudomonas syringae pv. tomato DC3000 is induced by plant phenolic acids
    Jun Seung Lee
    Hye Ryun Ryu
    Ji Young Cha
    Hyung Suk Baik
    Journal of Microbiology, 2015, 53 : 725 - 731
  • [22] The hrp pathogenicity island of Pseudomonas syringae pv. tomato DC3000 is induced by plant phenolic acids
    Lee, Jun Seung
    Ryu, Hye Ryun
    Cha, Ji Young
    Baik, Hyung Suk
    JOURNAL OF MICROBIOLOGY, 2015, 53 (10) : 725 - 731
  • [23] The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000
    Buell, CR
    Joardar, V
    Lindeberg, M
    Selengut, J
    Paulsen, IT
    Gwinn, ML
    Dodson, RJ
    Deboy, RT
    Durkin, AS
    Kolonay, JF
    Madupu, R
    Daugherty, S
    Brinkac, L
    Beanan, MJ
    Haft, DH
    Nelson, WC
    Davidsen, T
    Zafar, N
    Zhou, LW
    Liu, J
    Yuan, QP
    Khouri, H
    Fedorova, N
    Tran, B
    Russell, D
    Berry, K
    Utterback, T
    Van Aken, SE
    Feldblyum, TV
    D'Ascenzo, M
    Deng, WL
    Ramos, AR
    Alfano, JR
    Cartinhour, S
    Chatterjee, AK
    Delaney, TP
    Lazarowitz, SG
    Martin, GB
    Schneider, DJ
    Tang, XY
    Bender, CL
    White, O
    Fraser, CM
    Collmer, A
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (18) : 10181 - 10186
  • [24] Analysis of the small RNA spf in the plant pathogen Pseudomonas syringae pv. tomato strain DC3000
    Park, So Hae
    Bao, Zhongmeng
    Butcher, Bronwyn G.
    D'Amico, Katherine
    Xu, Yun
    Stodghil, Paul
    Schneider, David J.
    Cartinhour, Samuel
    Filiatrault, M. J.
    MICROBIOLOGY-SGM, 2014, 160 : 941 - 953
  • [25] Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000
    Feil, H
    Feil, WS
    Chain, P
    Larimer, F
    DiBartolo, G
    Copeland, A
    Lykidis, A
    Trong, S
    Nolan, M
    Goltsman, E
    Thiel, J
    Malfatti, S
    Loper, JE
    Lapidus, A
    Detter, JC
    Land, M
    Richardson, PM
    Kyrpides, NC
    Ivanova, N
    Lindow, SE
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (31) : 11064 - 11069
  • [26] Thiamine Is Required for Virulence and Survival of Pseudomonas syringae pv. tomato DC3000 on Tomatoes
    Liu, Jun
    Zhang, Xuejiang
    Deng, Siyi
    Wang, Hua
    Zhao, Youfu
    FRONTIERS IN MICROBIOLOGY, 2022, 13
  • [27] Small metabolites control antibiotic production in Pseudomonas syringae pv. tomato DC3000
    Hasegawa, H.
    Chatterjee, A.
    Tian, D.
    Collmer, A.
    Chatterjee, A. K.
    PHYTOPATHOLOGY, 2004, 94 (06) : S40 - S40
  • [28] CorR regulates multiple components of virulence in Pseudomonas syringae pv. tomato DC3000
    Sreedharan, Aswathy
    Penaloza-Vazquez, Alejandro
    Kunkel, Barbara N.
    Bender, Carol L.
    MOLECULAR PLANT-MICROBE INTERACTIONS, 2006, 19 (07) : 768 - 779
  • [29] Characterization of three transporters for the uptake of choline in Pseudomonas syringae pv. tomato DC3000
    Chen, C. A.
    Beattie, G. A.
    PHYTOPATHOLOGY, 2007, 97 (07) : S20 - S21
  • [30] Identification of a previously uncharacterized global regulator in Pseudomonas syringae pv. tomato DC3000
    Fishman, M.
    Zhang, J.
    Bronstein, P. A.
    Stoghill, P.
    Filiatrault, M. J.
    PHYTOPATHOLOGY, 2015, 105 (11) : 44 - 44