The Majority of the Type III Effector Inventory of Pseudomonas syringae pv. tomato DC3000 Can Suppress Plant Immunity

被引:202
|
作者
Guo, Ming [1 ,2 ]
Tian, Fang [1 ,3 ]
Wamboldt, Yashitola [1 ]
Alfano, James R. [1 ,2 ]
机构
[1] Univ Nebraska, Ctr Plant Sci Innovat, Lincoln, NE 68588 USA
[2] Univ Nebraska, Dept Plant Pathol, Lincoln, NE 68588 USA
[3] Univ Nebraska, Sch Biol Sci, Lincoln, NE 68588 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
PROTEIN SECRETION SYSTEM; PROGRAMMED CELL-DEATH; DISEASE RESISTANCE GENES; GRAM-NEGATIVE BACTERIA; INNATE IMMUNITY; ARABIDOPSIS-THALIANA; HYPERSENSITIVE RESPONSE; TYROSINE-PHOSPHATASE; SALMONELLA-TYPHIMURIUM; ESCHERICHIA-COLI;
D O I
10.1094/MPMI-22-9-1069
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Pseudomonas syringae type III protein secretion system (T3SS) and the type III effectors it injects into plant cells are required for plant pathogenicity and the ability to elicit a hypersensitive response (HR). The HR is a programmed cell death that is associated with effector-triggered immunity (ETI). A primary function of P. syringae type III effectors appears to be the suppression of ETI and pathogen-associated molecular pattern-triggered immunity (PTI), which is induced by conserved molecules on microorganisms. We reported that seven type III effectors from P. syringae pv. tomato DC3000 were capable of suppressing an HR induced by P. fluorescens(pHIR11) and have now tested 35 DC3000 type III effectors in this assay, finding that the majority of them can suppress the HR induced by HopA1. One newly identified type III effector with particularly strong HR suppression activity was HopS2. We used the pHIR11 derivative pLN1965, which lacks hopA1, in related assays and found that a subset of the type III effectors that suppressed HopA1-induced ETI also suppressed an ETI response induced by AvrRpm1 in Arabidopsis thaliana. A. thaliana plants expressing either HopAO1 or HopF2, two type III effectors that suppressed the HopA1-induced HR, were reduced in the flagellin-induced PTI response as well as PTI induced by other PAMPs and allowed enhanced in planta growth of P. syringae. Collectively, our results suggest that the majority of DC3000 type III effectors can suppress plant immunity. Additionally, the construct pLN1965 will likely be a useful tool in determining whether other type III effectors or effectors from other types of pathogens can suppress either ETI, PTI, or both.
引用
收藏
页码:1069 / 1080
页数:12
相关论文
共 50 条
  • [1] Multiple approaches to a complete inventory of Pseudomonas syringae pv. tomato DC3000 type III secretion system effector proteins
    Schechter, Lisa M.
    Vencato, Monica
    Jordan, Katy L.
    Schneider, Sarah E.
    Schneider, David J.
    Collmer, Alan
    MOLECULAR PLANT-MICROBE INTERACTIONS, 2006, 19 (11) : 1180 - 1192
  • [2] The HopPtoF locus of Pseudomonas syringae pv. tomato DC3000 encodes a type III chaperone and a cognate effector
    Shan, LB
    Oh, HS
    Chen, JF
    Guo, M
    Zhou, JM
    Alfano, JR
    Collmer, A
    Jia, X
    Tang, XY
    MOLECULAR PLANT-MICROBE INTERACTIONS, 2004, 17 (05) : 447 - 455
  • [3] Plant flavonoids target Pseudomonas syringae pv. tomato DC3000 flagella and type III secretion system
    Vargas, Paola
    Farias, Gabriela A.
    Nogales, Joaquina
    Prada, Harold
    Carvajal, Vivian
    Baron, Matilde
    Rivilla, Rafael
    Martin, Marta
    Olmedilla, Adela
    Gallegos, Maria-Trinidad
    ENVIRONMENTAL MICROBIOLOGY REPORTS, 2013, 5 (06): : 841 - 850
  • [4] Regulation of coronatine in Pseudomonas syringae pv. tomato DC3000
    Sreedharan, A.
    Bender, C. L.
    PHYTOPATHOLOGY, 2004, 94 (06) : S169 - S169
  • [5] Type III protein secretion and pathogenesis of Pseudomonas syringae pv. tomato DC3000 in Arabidopsis
    He, SY
    Wei, WS
    Yuan, J
    Hu, WQ
    Zwiesler-Vollick, J
    Thilmony, R
    Lee, P
    Plovanich-Jones, A
    BIOLOGY OF PLANT-MICROBE INTERACTIONS, VOL 2, 2000, : 82 - 87
  • [6] Modular Study of the Type III Effector Repertoire in Pseudomonas syringae pv. tomato DC3000 Reveals a Matrix of Effector Interplay in Pathogenesis
    Wei, Hai-Lei
    Zhang, Wei
    Collmer, Alan
    CELL REPORTS, 2018, 23 (06): : 1630 - 1638
  • [7] A Draft Genome Sequence of Pseudomonas syringae pv. tomato T1 Reveals a Type III Effector Repertoire Significantly Divergent from That of Pseudomonas syringae pv. tomato DC3000
    Almeida, Nalvo F.
    Yan, Shuangchun
    Lindeberg, Magdalen
    Studholme, David J.
    Schneider, David J.
    Condon, Bradford
    Liu, Haijie
    Viana, Carlos J.
    Warren, Andrew
    Evans, Clive
    Kemen, Eric
    MacLean, Dan
    Angot, Aurelie
    Martin, Gregory B.
    Jones, Jonathan D.
    Collmer, Alan
    Setubal, Joao C.
    Vinatzer, Boris A.
    MOLECULAR PLANT-MICROBE INTERACTIONS, 2009, 22 (01) : 52 - 62
  • [8] Identification of HrpA mutants that block type III secretion in Pseudomonas syringae pv. tomato DC3000
    Lee, Y. H.
    Kolade, O. O.
    Arvidson, D. N.
    He, S. Y.
    PHYTOPATHOLOGY, 2004, 94 (06) : S59 - S59
  • [9] Characterization of the Fur Regulon in Pseudomonas syringae pv. tomato DC3000
    Butcher, Bronwyn G.
    Bronstein, Philip A.
    Myers, Christopher R.
    Stodghill, Paul V.
    Bolton, James J.
    Markel, Eric J.
    Filiatrault, Melanie J.
    Swingle, Bryan
    Gaballa, Ahmed
    Helmann, John D.
    Schneider, David J.
    Cartinhour, Samuel W.
    JOURNAL OF BACTERIOLOGY, 2011, 193 (18) : 4598 - 4611
  • [10] Visualization and characterization of Pseudomonas syringae pv. tomato DC3000 pellicles
    Farias, Gabriela A.
    Olmedilla, Adela
    Gallegos, Maria-Trinidad
    MICROBIAL BIOTECHNOLOGY, 2019, 12 (04): : 688 - 702