Bayesian jackknife empirical likelihood for the error variance in linear regression models

被引:3
|
作者
Jiang, Hongyan [1 ]
Zhao, Yichuan [2 ]
机构
[1] Huaiyin Inst Technol, Dept Math & Phys, Huaian, Peoples R China
[2] Georgia State Univ, Dept Math & Stat, Atlanta, GA 30303 USA
基金
美国国家科学基金会;
关键词
Bayesian inference; coverage rate; credible interval; error variance; jackknife empirical likelihood; EQUALITY;
D O I
10.1080/00949655.2022.2066671
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Variance estimation is fundamental in the statistical inference. Due to the nonlinearity of the variance estimator, Lin et al. [Jackknife empirical likelihood for the error variance in linear models. J Nonparametr Stat. 2017;29:151-166.] proposed the jackknife empirical likelihood method for the error variance in a linear regression model. However, people may have some prior information about the error variance. In this article, we propose the Bayesian jackknife empirical likelihood (BJEL) for the error variance in a linear regression model. The validity of the proposed method is verified, and the asymptotic normal properties for the BJEL are also established. A simulation study shows that the new approach for the small sample performs better than its frequentist counterpart. Two real data sets are also used to illustrate the proposed methods.
引用
收藏
页码:3400 / 3413
页数:14
相关论文
共 50 条
  • [41] Jackknife empirical likelihood based diagnostic checking for Ar(p) models
    Fan, Yawen
    Liu, Xiaohui
    Cao, Yang
    Liu, Shaochu
    [J]. COMPUTATIONAL STATISTICS, 2024, 39 (05) : 2479 - 2509
  • [42] High-dimensional properties for empirical priors in linear regression with unknown error variance
    Fang, Xiao
    Ghosh, Malay
    [J]. STATISTICAL PAPERS, 2024, 65 (01) : 237 - 262
  • [43] High-dimensional properties for empirical priors in linear regression with unknown error variance
    Xiao Fang
    Malay Ghosh
    [J]. Statistical Papers, 2024, 65 : 237 - 262
  • [44] Jackknife empirical likelihood method for copulas
    Liang Peng
    Yongcheng Qi
    Ingrid Van Keilegom
    [J]. TEST, 2012, 21 : 74 - 92
  • [45] THE MINIMUM ERROR VARIANCE RULE FOR NON-LINEAR REGRESSION-MODELS
    MCALEER, M
    [J]. ECONOMICS LETTERS, 1980, 6 (01) : 17 - 21
  • [46] Error variance estimation in semi-functional partially linear regression models
    Aneiros, German
    Ling, Nengxiang
    Vieu, Philippe
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2015, 27 (03) : 316 - 330
  • [47] Jackknife empirical likelihood method for copulas
    Peng, Liang
    Qi, Yongcheng
    Van Keilegom, Ingrid
    [J]. TEST, 2012, 21 (01) : 74 - 92
  • [48] Jackknife empirical likelihood for parametric copulas
    Wang, Ruodu
    Peng, Liang
    Yang, Jingping
    [J]. SCANDINAVIAN ACTUARIAL JOURNAL, 2013, 2013 (05) : 325 - 339
  • [49] Bayesian likelihood robustness in linear models
    Pena, Daniel
    Zamar, Ruben
    Yan, Guohua
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (07) : 2196 - 2207
  • [50] Empirical Likelihood for Response Differences in Two Linear Regression Models with Missing Data
    Yong-song QIN
    Tao QIU
    Qing-zhu LEI
    [J]. Acta Mathematicae Applicatae Sinica, 2015, 31 (04) : 963 - 976