High-dimensional properties for empirical priors in linear regression with unknown error variance

被引:0
|
作者
Xiao Fang
Malay Ghosh
机构
[1] University of Florida,Department of Statistics
来源
Statistical Papers | 2024年 / 65卷
关键词
Bernstein von-Mises theorem; Model selection consistency; Multivariate t-distribution; Posterior contraction rate;
D O I
暂无
中图分类号
学科分类号
摘要
We study full Bayesian procedures for high-dimensional linear regression. We adopt data-dependent empirical priors introduced in Martin et al. (Bernoulli 23(3):1822–1847, 2017). In their paper, these priors have nice posterior contraction properties and are easy to compute. Our paper extend their theoretical results to the case of unknown error variance . Under proper sparsity assumption, we achieve model selection consistency, posterior contraction rates as well as Bernstein von-Mises theorem by analyzing multivariate t-distribution.
引用
收藏
页码:237 / 262
页数:25
相关论文
共 50 条
  • [1] High-dimensional properties for empirical priors in linear regression with unknown error variance
    Fang, Xiao
    Ghosh, Malay
    [J]. STATISTICAL PAPERS, 2024, 65 (01) : 237 - 262
  • [2] Empirical priors for prediction in sparse high-dimensional linear regression
    Martin, Ryan
    Tang, Yiqi
    [J]. Journal of Machine Learning Research, 2020, 21
  • [3] Empirical Priors for Prediction in Sparse High-dimensional Linear Regression
    Martin, Ryan
    Tang, Yiqi
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [4] High-Dimensional Regression with Unknown Variance
    Giraud, Christophe
    Huet, Sylvie
    Verzelen, Nicolas
    [J]. STATISTICAL SCIENCE, 2012, 27 (04) : 500 - 518
  • [5] Variational Bayes for High-Dimensional Linear Regression With Sparse Priors
    Ray, Kolyan
    Szabo, Botond
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (539) : 1270 - 1281
  • [6] High-dimensional analysis of variance in multivariate linear regression
    Lou, Zhipeng
    Zhang, Xianyang
    Wu, Wei Biao
    [J]. BIOMETRIKA, 2023, 110 (03) : 777 - 797
  • [7] Estimating the error variance in a high-dimensional linear model
    Yu, Guo
    Bien, Jacob
    [J]. BIOMETRIKA, 2019, 106 (03) : 533 - 546
  • [8] Bayesian inference for high-dimensional linear regression under mnet priors
    Tan, Aixin
    Huang, Jian
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2016, 44 (02): : 180 - 197
  • [9] Empirical likelihood for high-dimensional linear regression models
    Hong Guo
    Changliang Zou
    Zhaojun Wang
    Bin Chen
    [J]. Metrika, 2014, 77 : 921 - 945
  • [10] Empirical likelihood for high-dimensional linear regression models
    Guo, Hong
    Zou, Changliang
    Wang, Zhaojun
    Chen, Bin
    [J]. METRIKA, 2014, 77 (07) : 921 - 945