Maximal rigid subcategories and cluster-tilting subcategories in 2-CY categories

被引:0
|
作者
Xu, Jinde [1 ]
Ouyang, Baiyu [2 ]
机构
[1] Univ Sherbrooke, Dept Math, Sherbrooke, PQ J1K 2R1, Canada
[2] Hunan Normal Univ, Coll Math & Comp Sci, Changsha 410081, Hunan, Peoples R China
关键词
2-CY triangulated categories; Cluster-tilting subcategories; Maximal rigid subcategories; 2-CALABI-YAU CATEGORIES;
D O I
10.1016/j.jalgebra.2016.10.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let C be a connected Horn-finite 2-CY triangulated category. We prove that if T is a functorially finite maximal rigid subcategory of C without loops in its quiver, then T is cluster-tilting. In particular, this gives a positive answer to a conjecture proposed in [5]. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:183 / 193
页数:11
相关论文
共 50 条
  • [31] Cluster tilting subcategories and torsion pairs in Igusa-Todorov cluster categories of Dynkin type
    Gratz, Sira
    Holm, Thorsten
    Jorgensen, Peter
    MATHEMATISCHE ZEITSCHRIFT, 2019, 292 (1-2) : 33 - 56
  • [32] On cluster-tilting graphs for hereditary categories
    Fu, Changjian
    Geng, Shengfei
    ADVANCES IN MATHEMATICS, 2021, 383
  • [33] Lifting to Cluster-tilting Objects in Higher Cluster Categories
    Liu, Pin
    ALGEBRA COLLOQUIUM, 2012, 19 (04) : 707 - 712
  • [34] On the monomorphism category of n-cluster tilting subcategories
    Javad Asadollahi
    Rasool Hafezi
    Somayeh Sadeghi
    Science China(Mathematics), 2022, 65 (07) : 1343 - 1362
  • [35] Pure semisimple n-cluster tilting subcategories
    Ebrahimi, Ramin
    Nasr-Isfahani, Alireza
    JOURNAL OF ALGEBRA, 2020, 549 : 177 - 194
  • [36] On the monomorphism category of n-cluster tilting subcategories
    Javad Asadollahi
    Rasool Hafezi
    Somayeh Sadeghi
    Science China Mathematics, 2022, 65 : 1343 - 1362
  • [37] nZ-cluster tilting subcategories for Nakayama algebras
    Herschend, Martin
    Kvamme, Sondre
    Vaso, Laertis
    MATHEMATISCHE ZEITSCHRIFT, 2025, 309 (02)
  • [38] On the monomorphism category of n-cluster tilting subcategories
    Asadollahi, Javad
    Hafezi, Rasool
    Sadeghi, Somayeh
    SCIENCE CHINA-MATHEMATICS, 2022, 65 (07) : 1343 - 1362
  • [39] n-Exangulated categories (II): Constructions from n-cluster tilting subcategories
    Herschend, Martin
    Liu, Yu
    Nakaoka, Hiroyuki
    JOURNAL OF ALGEBRA, 2022, 594 : 636 - 684
  • [40] A bijection between support τ-tilting subcategories and τ-cotorsion pairs in extriangulated categories
    Zhu, Zhiwei
    Wei, Jiaqun
    COMMUNICATIONS IN ALGEBRA, 2025, 53 (05) : 1964 - 1977