Breather solutions of the cubic Klein-Gordon equation

被引:8
|
作者
Scheider, Dominic [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Anal, Englerstr 2, D-76131 Karlsruhe, Germany
关键词
Klein-Gordon equation; breather; bifurcation; nonlinear Helmholtz system; GLOBAL EXISTENCE; PRINCIPLE;
D O I
10.1088/1361-6544/abb78b
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain real-valued, time-periodic and radially symmetric solutions of the cubic Klein-Gordon equation partial derivative U-2(t)-Delta U+m(2)U=Gamma(x)U-3 on R x R-3, which are weakly localized in space. Various families of such 'breather' solutions are shown to bifurcate from any given nontrivial stationary solution. The construction of weakly localized breathers in three space dimensions is, to the author's knowledge, a new concept and based on the reformulation of the cubic Klein-Gordon equation as a system of coupled nonlinear Helmholtz equations involving suitable conditions on the far field behavior.
引用
收藏
页码:7140 / 7166
页数:27
相关论文
共 50 条
  • [31] Square integrable solutions to the Klein-Gordon equation on a manifold
    I. V. Volovich
    V. V. Kozlov
    [J]. Doklady Mathematics, 2006, 73 : 441 - 444
  • [32] Exact Solutions of the Klein-Gordon Equation with Hylleraas Potential
    Ikot, Akpan N.
    Awoga, Oladunjoye A.
    Ita, Benedict I.
    [J]. FEW-BODY SYSTEMS, 2012, 53 (3-4) : 539 - 548
  • [33] New exact solutions of nonlinear Klein-Gordon equation
    Zheng, Q
    Yue, P
    Gong, LX
    [J]. CHINESE PHYSICS, 2006, 15 (01): : 35 - 38
  • [34] LORENTZ-INVARIANT SOLUTIONS OF KLEIN-GORDON EQUATION
    DEJAGER, EM
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1967, 15 (04) : 944 - &
  • [35] Square integrable solutions to the Klein-Gordon equation on a manifold
    Volovich, I. V.
    Kozlov, V. V.
    [J]. DOKLADY MATHEMATICS, 2006, 73 (03) : 441 - 444
  • [36] LOCAL SMOOTH SOLUTIONS OF THE NONLINEAR KLEIN-GORDON EQUATION
    Cazenave, Thierry
    Naumkin, Ivan
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (05): : 1649 - 1672
  • [37] Approximate Solutions of Klein-Gordon Equation with Kratzer Potential
    Hassanabadi, H.
    Rahimov, H.
    Zarrinkamar, S.
    [J]. ADVANCES IN HIGH ENERGY PHYSICS, 2011, 2011
  • [38] On the Existence of Global Solutions for a Nonlinear Klein-Gordon Equation
    Polat, Necat
    Taskesen, Hatice
    [J]. FILOMAT, 2014, 28 (05) : 1073 - 1079
  • [39] Superluminal solutions to the Klein-Gordon equation and a causality problem
    Borghardt, AA
    Belogolovskii, MA
    Karpenko, DY
    [J]. PHYSICS LETTERS A, 2003, 318 (4-5) : 342 - 344
  • [40] Mode solutions of the Klein-Gordon equation in warped spacetimes
    Droz-Vincent, P
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2001, 18 (02) : 207 - 223