LOCAL SMOOTH SOLUTIONS OF THE NONLINEAR KLEIN-GORDON EQUATION

被引:1
|
作者
Cazenave, Thierry [1 ]
Naumkin, Ivan [2 ]
机构
[1] Sorbonne Univ, Univ Paris, CNRS, Lab Jacques Louis Lions, BC 187,4 Pl Jussieu, F-75252 Paris 05, France
[2] Univ Nacl Autonoma Mexico, Inst Invest Matemat Aplicadas & Sistemas, Dept Fis Matemat, Apartado Postal 20-126, Ciudad De Mexico 01000, Mexico
来源
关键词
Nonlinear Klein-Gordon equation; nonlinear wave equation; nonlinear Dirac equation; local existence; smooth solutions; non-vanishing solutions; CUBIC DIRAC-EQUATION; DEFINED SCATTERING OPERATORS; GLOBAL CAUCHY-PROBLEM; WELL-POSEDNESS; SCHRODINGER-EQUATIONS; ENERGY SCATTERING; SPACE; EXISTENCE; WAVE; DECAY;
D O I
10.3934/dcdss.2020448
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given any mu(1), mu(2) is an element of C and alpha > 0, we prove the local existence of arbitrarily smooth solutions of the nonlinear Klein-Gordon equation partial derivative(tt)u - Delta u + mu(1)u = mu(2)vertical bar u vertical bar(alpha)u on R-N, N >= 1, that do not vanish, i.e. vertical bar u(t,x)vertical bar > 0 for all x is an element of R-N and all sufficiently small t. We write the equation in the form of a first-order system associated with a pseudo-differential operator, then use a method adapted from [Commun. Contemp. Math. 19 (2017), no. 2, 1650038]. We also apply a similar (but simpler than in the case of the Klein-Gordon equation) argument to prove an analogous result for a class of nonlinear Dirac equations.
引用
收藏
页码:1649 / 1672
页数:24
相关论文
共 50 条