Weak Galerkin based a posteriori error estimates for second order elliptic interface problems on polygonal meshes

被引:13
|
作者
Mu, Lin [1 ]
机构
[1] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37831 USA
关键词
Weak Galerkin; Finite element methods; Second-order elliptic interface problems; A posterior error estimate; Polygonal meshes; FINITE-ELEMENT METHODS; DIFFUSION; REFINEMENT;
D O I
10.1016/j.cam.2019.04.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a posteriori error estimate of weak Galerkin (WG) finite element methods based on the second order elliptic interface problems. This estimate can be applied to polygonal meshes or meshes with hanging nodes. The reliability and efficiency of the designed error estimator has been proved in this work. Extensive numerical tests are performed to validate our algorithm. These results demonstrate the effectiveness of the adaptive mesh refinement guided by the proposed error estimator. (C) 2019 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:413 / 425
页数:13
相关论文
共 50 条
  • [31] A POSTERIORI ERROR ESTIMATES OF FINITE VOLUME ELEMENT METHOD FOR SECOND-ORDER QUASILINEAR ELLIPTIC PROBLEMS
    Bi, Chunjia
    Wang, Cheng
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2016, 13 (01) : 22 - 40
  • [32] Star-Based a Posteriori Error Estimates for Elliptic Problems
    B. Achchab
    A. Agouzal
    N. Debit
    K. Bouihat
    Journal of Scientific Computing, 2014, 60 : 184 - 202
  • [33] Star-Based a Posteriori Error Estimates for Elliptic Problems
    Achchab, B.
    Agouzal, A.
    Debit, N.
    Bouihat, K.
    JOURNAL OF SCIENTIFIC COMPUTING, 2014, 60 (01) : 184 - 202
  • [34] L2 estimates for weak Galerkin finite element methods for second-order wave equations with polygonal meshes
    Kumar, Naresh
    Dutta, Jogen
    Deka, Bhupen
    APPLIED NUMERICAL MATHEMATICS, 2023, 192 : 84 - 103
  • [35] A priori and a posteriori error estimates of the weak Galerkin finite element method for parabolic problems
    Liu, Ying
    Nie, Yufeng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 99 : 73 - 83
  • [36] Low Regularity Error Analysis for Weak Galerkin Finite Element Methods for Second Order Elliptic Problems
    Ye, Xiu
    Zhang, Shangyou
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2021, 14 (03): : 613 - 623
  • [37] A WEAK GALERKIN METHOD FOR SECOND ORDER ELLIPTIC PROBLEMS WITH POLYNOMIAL REDUCTION
    Malluwawad, Nolisa
    Hussain, Saqib
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2019, 9 (02): : 655 - 670
  • [38] An a posteriori error indicator for discontinuous Galerkin approximations of fourth-order elliptic problems
    Georgoulis, Emmanuil H.
    Houston, Paul
    Virtanen, Juha
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (01) : 281 - 298
  • [39] MIXED VIRTUAL ELEMENT METHODS FOR GENERAL SECOND ORDER ELLIPTIC PROBLEMS ON POLYGONAL MESHES
    da Veiga, Lourenco Beirao
    Brezzi, Franco
    Marini, Luisa Donatella
    Russo, Alessandro
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (03): : 727 - 747
  • [40] Virtual Element Method for general second-order elliptic problems on polygonal meshes
    da Veiga, L. Beirao
    Brezzi, F.
    Marini, L. D.
    Russo, A.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2016, 26 (04): : 729 - 750