An improvement to the John-Nirenberg inequality for functions in critical Sobolev spaces

被引:6
|
作者
Martinez, Angel D. [1 ]
Spector, Daniel [2 ]
机构
[1] Inst Adv Study, Fuld Hall 412,1 Einstein Dr, Princeton, NJ 08540 USA
[2] Okinawa Inst Sci & Technol Grad Univ, Nonlinear Anal Unit, 1919-1 Tancha, Onna, Okinawa, Japan
基金
美国国家科学基金会;
关键词
Riesz Potentials; Critical Sobolev Embedding; Hausdorff Content; SHARP INEQUALITY;
D O I
10.1515/anona-2020-0157
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is known that functions in a Sobolev space with critical exponent embed into the space of functions of bounded mean oscillation, and therefore satisfy the John-Nirenberg inequality and a corresponding exponential integrability estimate. While these inequalities are optimal for general functions of bounded mean oscillation, the main result of this paper is an improvement for functions in a class of critical Sobolev spaces. Precisely, we prove the inequality H-infinity(beta)({x is an element of Omega : vertical bar I(alpha)f(x)vertical bar > t}) <= Ce-ctq' for all parallel to f parallel to(LN/a,q(Omega)) <= 1 and any beta is an element of (0, N], where Omega subset of R-N, N-infinity(beta) is the Hausdorff content, L-N/(alpha,q) (Omega) is a Lorentz space with q is an element of (1, infinity], q' = q/(q - 1) is the Holder conjugate to q, and I(alpha)f denotes the Riesz potential of f of order alpha is an element of (0, N).
引用
下载
收藏
页码:877 / 894
页数:18
相关论文
共 50 条
  • [1] THE JOHN-NIRENBERG INEQUALITY AND A SOBOLEV INEQUALITY IN GENERAL DOMAINS
    HURRISYRJANEN, R
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 175 (02) : 579 - 587
  • [2] BMO and the John-Nirenberg Inequality on Measure Spaces
    Dafni, Galia
    Gibara, Ryan
    Lavigne, Andrew
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2020, 8 (01): : 335 - 362
  • [3] JOHN-NIRENBERG INEQUALITY FOR LIPSCHITZ MARTINGALE SPACES
    Ren, Yanbo
    Ma, Congbian
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2024, 27 (01): : 45 - 52
  • [4] On the John-Nirenberg inequality
    Pak, Hee Chul
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [5] Parabolic John-Nirenberg Spaces
    Berkovits, Lauri
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
  • [6] Vanishing John-Nirenberg spaces
    Tao, Jin
    Yang, Dachun
    Yuan, Wen
    ADVANCES IN CALCULUS OF VARIATIONS, 2022, 15 (04) : 831 - 861
  • [7] The space of monogenic BMO-functions and a John-Nirenberg inequality
    Bernstein, S
    PROGRESS IN ANALYSIS, VOLS I AND II, 2003, : 307 - 315
  • [8] The John-Nirenberg inequality with sharp constants
    Lerner, Andrei K.
    COMPTES RENDUS MATHEMATIQUE, 2013, 351 (11-12) : 463 - 466
  • [9] Sparse Brudnyi and John-Nirenberg Spaces
    Dominguez, Oscar
    Milman, Mario
    COMPTES RENDUS MATHEMATIQUE, 2021, 359 (08) : 1059 - 1069
  • [10] Uchiyama's lemma and the John-Nirenberg inequality
    Knese, Greg
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2013, 45 : 683 - 692