Prediction of sea surface temperature from the Global Historical Climatology Network data

被引:19
|
作者
Shen, SSP [1 ]
Basist, AN
Li, GL
Williams, C
Karl, TR
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[2] Natl Climat Ctr, Asheville, NC 28801 USA
[3] Meteorol Serv Canada Ontario Region, Div Atmospher Sci, Toronto, ON M3H 5T4, Canada
关键词
climate data reconstruction; empirical orthogonal function (EOF); sea surface temperature (SST); GHCN data; data error analysis; mean square error (MSE);
D O I
10.1002/env.638
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This article describes a spatial prediction method that predicts the monthly sea surface temperature (SST) anomaly field from the land only data. The land data are from the Global Historical Climatology Network (GHCN). The prediction period is 1880-1999 and the prediction ocean domain extends from 60degreesS to 60degreesN with a spatial resolution 5degrees x 5degrees. The prediction method is a regression over the basis of empirical orthogonal functions (EOFs), The EOFs are computed from the following data sets: (a) the Climate Prediction Center's optimally interpolated sea surface temperature (OI/SST) data (1982-1999); (b) the National Climatic Data Center's blended product of land-surface air temperature (1992-1999) produced from combining the Special Satellite Microwave Imager and GHCN: and (c) the National Centers for Environmental Prediction/National Center for Atmospheric Research Reanalysis data (1982-1999). The optimal prediction method minimizes the first-M-mode mean square error between the true and predicted anomalies over both land and ocean. In the optimization process, the data errors of the GHCN boxes are used, and their contribution to the prediction error is taken into account. The area-averaued root mean square error of prediction is calculated. Numerical experiments demonstrate that this EOF prediction method can accurately recover the global SST anomalies during some circulation patterns and add value to the SST bias correction in the early history of SST observations and the validation of general circulation models. Our results show that (i) the land only data can accurately predict the SST anomaly in the El Nino months when the temperature anomaly structure has very large correlation scales, and (ii) the predictions for La Nina, neutral. or transient months require more EOF modes because of the presence of the small scale structures in the anomaly field. Copyright (C) 2004 John Wiley Sons, Ltd.
引用
收藏
页码:233 / 249
页数:17
相关论文
共 50 条
  • [41] A MODEL OF THE TROPICAL PACIFIC SEA-SURFACE TEMPERATURE CLIMATOLOGY
    SEAGER, R
    ZEBIAK, SE
    CANE, MA
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1988, 93 (C2): : 1265 - 1280
  • [42] Time-Series Graph Network for Sea Surface Temperature Prediction
    Sun, Yongjiao
    Yao, Xin
    Bi, Xin
    Huang, Xuechun
    Zhao, Xiangguo
    Qiao, Baiyou
    BIG DATA RESEARCH, 2021, 25
  • [43] High spatial resolution sea surface climatology from Landsat thermal infrared data
    Fisher, JI
    Mustard, JF
    REMOTE SENSING OF ENVIRONMENT, 2004, 90 (03) : 293 - 307
  • [44] The PhanSST global database of Phanerozoic sea surface temperature proxy data
    Judd, Emily J. J.
    Tierney, Jessica E. E.
    Huber, Brian T. T.
    Wing, Scott L. L.
    Lunt, Daniel J. J.
    Ford, Heather L. L.
    Inglis, Gordon N. N.
    McClymont, Erin L. L.
    O'Brien, Charlotte L. L.
    Rattanasriampaipong, Ronnakrit
    Si, Weimin
    Staitis, Matthew L. L.
    Thirumalai, Kaustubh
    Anagnostou, Eleni
    Cramwinckel, Margot J. J.
    Dawson, Robin R. R.
    Evans, David
    Gray, William R. R.
    Grossman, Ethan L. L.
    Henehan, Michael J. J.
    Hupp, Brittany N. N.
    MacLeod, Kenneth G. G.
    O'Connor, Lauren K. K.
    Montes, Maria Luisa Sanchez
    Song, Haijun
    Zhang, Yi Ge
    SCIENTIFIC DATA, 2022, 9 (01)
  • [45] Solar Cycles in 150 Years of Global Sea Surface Temperature Data
    Zhou, Jiansong
    Tung, Ka-Kit
    JOURNAL OF CLIMATE, 2010, 23 (12) : 3234 - 3248
  • [46] THE METEOROLOGICAL-OFFICE HISTORICAL SEA-SURFACE TEMPERATURE DATA SET
    PARKER, DE
    METEOROLOGICAL MAGAZINE, 1987, 116 (1381): : 250 - 254
  • [47] The global climatology of an interannually varying air–sea flux data set
    W. G. Large
    S. G. Yeager
    Climate Dynamics, 2009, 33 : 341 - 364
  • [48] A new global gridded sea surface temperature data product based on multisource data
    Cao, Mengmeng
    Mao, Kebiao
    Yan, Yibo
    Shi, Jiancheng
    Wang, Han
    Xu, Tongren
    Fang, Shu
    Yuan, Zijin
    EARTH SYSTEM SCIENCE DATA, 2021, 13 (05) : 2111 - 2134
  • [49] Multisensor historical climatology of satellite-derived global land surface moisture
    Owe, Manfred
    de Jeu, Richard
    Holmes, Thomas
    JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2008, 113 (F1)
  • [50] Employing higher density lower reliability weather data from the Global Historical Climatology Network monitors to generate serially complete weather data for watershed modelling
    Garna, Roja K.
    Easton, Zachary M.
    Faulkner, Joshua W.
    Collick, Amy S.
    Fuka, Daniel R.
    HYDROLOGICAL PROCESSES, 2023, 37 (11)