Prediction of sea surface temperature from the Global Historical Climatology Network data

被引:19
|
作者
Shen, SSP [1 ]
Basist, AN
Li, GL
Williams, C
Karl, TR
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[2] Natl Climat Ctr, Asheville, NC 28801 USA
[3] Meteorol Serv Canada Ontario Region, Div Atmospher Sci, Toronto, ON M3H 5T4, Canada
关键词
climate data reconstruction; empirical orthogonal function (EOF); sea surface temperature (SST); GHCN data; data error analysis; mean square error (MSE);
D O I
10.1002/env.638
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This article describes a spatial prediction method that predicts the monthly sea surface temperature (SST) anomaly field from the land only data. The land data are from the Global Historical Climatology Network (GHCN). The prediction period is 1880-1999 and the prediction ocean domain extends from 60degreesS to 60degreesN with a spatial resolution 5degrees x 5degrees. The prediction method is a regression over the basis of empirical orthogonal functions (EOFs), The EOFs are computed from the following data sets: (a) the Climate Prediction Center's optimally interpolated sea surface temperature (OI/SST) data (1982-1999); (b) the National Climatic Data Center's blended product of land-surface air temperature (1992-1999) produced from combining the Special Satellite Microwave Imager and GHCN: and (c) the National Centers for Environmental Prediction/National Center for Atmospheric Research Reanalysis data (1982-1999). The optimal prediction method minimizes the first-M-mode mean square error between the true and predicted anomalies over both land and ocean. In the optimization process, the data errors of the GHCN boxes are used, and their contribution to the prediction error is taken into account. The area-averaued root mean square error of prediction is calculated. Numerical experiments demonstrate that this EOF prediction method can accurately recover the global SST anomalies during some circulation patterns and add value to the SST bias correction in the early history of SST observations and the validation of general circulation models. Our results show that (i) the land only data can accurately predict the SST anomaly in the El Nino months when the temperature anomaly structure has very large correlation scales, and (ii) the predictions for La Nina, neutral. or transient months require more EOF modes because of the presence of the small scale structures in the anomaly field. Copyright (C) 2004 John Wiley Sons, Ltd.
引用
收藏
页码:233 / 249
页数:17
相关论文
共 50 条
  • [11] HiGRN: A Hierarchical Graph Recurrent Network for Global Sea Surface Temperature Prediction
    Yang, Hanchen
    Li, Wengen
    Hou, Siyun
    Guan, Jihong
    Zhou, Shuigeng
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2023, 14 (04)
  • [12] Global Sea Surface Temperature and Sea Level Rise Estimation with Optimal Historical Time Lag Data
    Aral, Mustafa M.
    Guan, Jiabao
    WATER, 2016, 8 (11)
  • [13] A global climatology of the diurnal variations in sea-surface temperature and implications for MSU temperature trends
    Kennedy, J. J.
    Brohan, P.
    Tett, S. F. B.
    GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (05)
  • [14] An analogue prediction method for global sea surface temperature
    Agarwal, N
    Kishtawal, CM
    Pal, PK
    CURRENT SCIENCE, 2001, 80 (01): : 49 - 55
  • [15] Distribution of Landscape Types in the Global Historical Climatology Network
    Montandon, Laure M.
    Fall, Souleymane
    Pielke, Roger A., Sr.
    Niyogi, Dev
    EARTH INTERACTIONS, 2011, 15 : 1 - 24
  • [16] CHANGES IN GLOBAL SURFACE-TEMPERATURE FROM 1880 TO 1977 DERIVED FROM HISTORICAL RECORDS OF SEA-SURFACE TEMPERATURE
    PALTRIDGE, G
    WOODRUFF, S
    MONTHLY WEATHER REVIEW, 1981, 109 (12) : 2427 - 2434
  • [17] Improved global surface currents from the merging of altimetry and Sea Surface Temperature data
    Rio, M-H
    Santoleri, R.
    REMOTE SENSING OF ENVIRONMENT, 2018, 216 : 770 - 785
  • [18] Evaluation of the Homogenization Adjustments Applied to European Temperature Records in the Global Historical Climatology Network Dataset
    O'Neill, Peter
    Connolly, Ronan
    Connolly, Michael
    Soon, Willie
    Chimani, Barbara
    Crok, Marcel
    de Vos, Rob
    Harde, Hermann
    Kajaba, Peter
    Nojarov, Peter
    Przybylak, Rajmund
    Rasol, Dubravka
    Skrynyk, Oleg
    Skrynyk, Olesya
    Stepanek, Petr
    Wypych, Agnieszka
    Zahradnicek, Pavel
    ATMOSPHERE, 2022, 13 (02)
  • [19] STATISTICAL PREDICTION OF GLOBAL SEA LEVEL FROM GLOBAL TEMPERATURE
    Bolin, David
    Guttorp, Peter
    Januzzi, Alex
    Jones, Daniel
    Novak, Marie
    Podschwit, Harry
    Richardson, Lee
    Saerkkae, Aila
    Sowder, Colin
    Zimmerman, Aaron
    STATISTICA SINICA, 2015, 25 (01) : 351 - 367
  • [20] An Overview of the Global Historical Climatology Network-Daily Database
    Menne, Matthew J.
    Durre, Imke
    Vose, Russell S.
    Gleason, Byron E.
    Houston, Tamara G.
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2012, 29 (07) : 897 - 910