Choosability and fractional chromatic numbers

被引:30
|
作者
Alon, N
Tuza, Z
Voigt, M
机构
[1] TEL AVIV UNIV,RAYMOND & BEVERLY SACKLER FAC EXACT SCI,DEPT MATH,IL-69978 TEL AVIV,ISRAEL
[2] HUNGARIAN ACAD SCI,INST COMP & AUTOMAT,H-1111 BUDAPEST,HUNGARY
[3] TECH UNIV ILMENAU,INST MATH,D-98684 ILMENAU,GERMANY
关键词
D O I
10.1016/S0012-365X(96)00159-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph G is (a, b)-choosable if for any assignment of a list of a colors to each of its vertices there is a subset of b colors of each list so that subsets corresponding to adjacent vertices are disjoint. It is shown that for every graph G, the minimum ratio a/b where a,b range over all pairs of integers for which G is (a,b)-choosable is equal to the fractional chromatic number of G.
引用
收藏
页码:31 / 38
页数:8
相关论文
共 50 条
  • [41] Chromatic Numbers of Simplicial Manifolds
    Frank H. Lutz
    Jesper M. Møller
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2020, 61 : 419 - 453
  • [42] TOTAL CHROMATIC-NUMBERS
    SEOUD, MA
    APPLIED MATHEMATICS LETTERS, 1992, 5 (06) : 37 - 39
  • [43] On the chromatic numbers of spheres in ℝn
    A. M. Raigorodskii
    Combinatorica, 2012, 32 : 111 - 123
  • [44] Chromatic Vertex Folkman Numbers
    Xu, Xiaodong
    Liang, Meilian
    Radziszowski, Stanislaw P.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (03): : 1 - 12
  • [45] On the upper chromatic numbers of the reals
    Archer, AF
    DISCRETE MATHEMATICS, 2000, 214 (1-3) : 65 - 75
  • [46] RAMSEY THEORY AND CHROMATIC NUMBERS
    CHARTRAND, G
    POLIMENI, AD
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A37 - A37
  • [47] On the Chromatic Numbers of Random Hypergraphs
    Yu. A. Demidovich
    D. A. Shabanov
    Doklady Mathematics, 2020, 102 : 380 - 383
  • [48] Chromatic numbers of competition graphs
    Linear Algebra Its Appl, (225):
  • [49] On the Chromatic Numbers of Rational Spaces
    A. A. Sokolov
    Mathematical Notes, 2018, 103 : 111 - 117
  • [50] Chromatic Numbers of Hyperbolic Surfaces
    Parlier, Hugo
    Petit, Camille
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2016, 65 (04) : 1401 - 1423