Signal transduction profiling using label-free biosensors

被引:9
|
作者
Cooper, Matthew A. [1 ]
机构
[1] Univ Queensland, Inst Mol Biosci, St Lucia, Qld 4072, Australia
关键词
Affinity; G protein-coupled receptor; GPCR; kinetic analysis; label-free; membrane receptor; photonic crystal; quartz crystal microbalance; resonant waveguide grating; screening; supported lipid bilayer; surface plasmon resonance; trans-membrane protein; SURFACE-PLASMON RESONANCE; PROTEIN-COUPLED-RECEPTOR; THERMODYNAMIC ANALYSIS; MOLECULAR RECOGNITION; PEPTIDE INTERACTIONS; OPTICAL BIOSENSOR; FREQUENCY-SHIFTS; DRUG DISCOVERY; PX DOMAIN; BINDING;
D O I
10.1080/10799890903047825
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Knowledge of the way in which ligands modulate cellular responses via membrane-associated receptors is of central importance to drug discovery and elucidation of signal transduction pathways. Biophysical label-free methods can be used to characterize ligand and drug candidate interactions with neurotransmitters, cytokine receptors, tyrosine kinase receptors, ligand- and voltage-gated ion channels, G protein-coupled receptors (GPCRs), and antibody receptors. Ligand or drug candidate screening typically involves selecting ligands or subsets of a compound library for analysis, transfecting a cell line overexpressing the target receptor, then monitoring one or two downstream reporters of receptor activation such as Ca2+, cAMP, inositol phosphate, etc. Inevitably, this process leads to a data set predicated by these selections. In contrast, label-free screening techniques allow a holistic, pathway-independent screening strategy to provide a functional or phenotypic readout of receptor activation. Detection techniques that measure changes in cell conductance, viscoelastic properties, refractive index, and other optical parameters that are modulated as a consequence of receptor activation are reviewed.
引用
收藏
页码:224 / 233
页数:10
相关论文
共 50 条
  • [1] Responsive Hydrogels for Label-Free Signal Transduction within Biosensors
    Gawel, Kamila
    Barriet, David
    Sletmoen, Marit
    Stokke, Bjorn Torger
    [J]. SENSORS, 2010, 10 (05): : 4381 - 4409
  • [2] A Label-Free Detection of Biomolecules Using Micromechanical Biosensors
    Omidi, Meisam
    Malakoutian, M. A.
    Choolaei, Mohammadmehdi
    Oroojalian, F.
    Haghiralsadat, F.
    Yazdian, F.
    [J]. CHINESE PHYSICS LETTERS, 2013, 30 (06)
  • [3] Silicon Photonic Biosensors Using Label-Free Detection
    Luan, Enxiao
    Shoman, Hossam
    Ratner, Daniel M.
    Cheung, Karen C.
    Chrostowski, Lukas
    [J]. SENSORS, 2018, 18 (10)
  • [4] Evaluation of kinetics using label-free optical biosensors
    Sun, Yung-Shin
    Landry, James P.
    Zhu, X. D.
    [J]. INSTRUMENTATION SCIENCE & TECHNOLOGY, 2017, 45 (05) : 486 - 505
  • [5] A Label-Free Detection of Biomolecules Using Micromechanical Biosensors
    Meisam Omidi
    MAMalakoutian
    Mohammadmehdi Choolaei
    FOroojalian
    FHaghiralsadat
    FYazdian
    [J]. Chinese Physics Letters., 2013, 30 (06) - 239
  • [6] Going a label-free route with biosensors
    Shaffer, C
    [J]. GENETIC ENGINEERING NEWS, 2006, 26 (12): : 20 - +
  • [7] Label-Free MicroRNA Optical Biosensors
    Lai, Meimei
    Slaughter, Gymama
    [J]. NANOMATERIALS, 2019, 9 (11)
  • [8] Label-Free Biosensors for Cell Biology
    Fang, Ye
    [J]. INTERNATIONAL JOURNAL OF ELECTROCHEMISTRY, 2011, 2011
  • [9] Kinetic Analysis of Biomolecular Interactions Using Label-Free Biosensors
    Sun, Yung-Shin
    Zhu, X. D.
    [J]. INSTRUMENTATION SCIENCE & TECHNOLOGY, 2015, 43 (02) : 255 - 267
  • [10] Label-free cell profiling
    Schasfoort, Richard B. M.
    Bentlage, Arthur E. H.
    Stojanovic, Ivan
    van der Kooi, Alex
    van der Schoot, Ellen
    Terstappen, Leon W. M. M.
    Vidarsson, Gestur
    [J]. ANALYTICAL BIOCHEMISTRY, 2013, 439 (01) : 4 - 6