Data-Driven Nonlinear VRFT for Dead-Zone Compensation in Servo Systems Control

被引:0
|
作者
Bumb, Come [1 ]
Radac, Mircea-Bogdan [1 ]
Precup, Radu-Emil [1 ]
Roman, Raul-Cristian [1 ]
机构
[1] Politehn Univ Timisoara, AAI Dept, Timisoara, Romania
关键词
dead-zone compensation; experimental results; model-free control; neural networks; servo system control; Virtual Reference Feedback Tuning; EXPERIMENTAL VALIDATION; TRAJECTORY TRACKING; ADAPTIVE-CONTROL; NEURAL-NETWORKS; CONTROL DESIGN;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose herein a data-driven dead-zone (DZ) compensation strategy using a model-free Virtual Reference Feedback Tuning (VRFT) approach. The VRFT tuning scheme is accommodated for two controller structures: the first one which explicitly includes a model of the DZ inverse to be identified and the second one which uses a Neural Network (NN) to model the controller to be identified. The main question to be answered here is whether if the inclusion of an explicit model of a static nonlinearity (DZ in this case) can be avoided while preserving the control system performance. Thorough investigation case studies are carried out both in simulation and experiment on a laboratory 3D-crane system as a typical servo system control application.
引用
收藏
页码:816 / 821
页数:6
相关论文
共 50 条
  • [21] Nonlinear Adaptive Control for Dynamic and Dead-zone Uncertainties in Robotic Systems
    Liu, Xia
    Jiang, Wei
    Dong, Xiu-Cheng
    [J]. INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2017, 15 (02) : 875 - 882
  • [22] Adaptive output control of nonlinear systems with uncertain dead-zone nonlinearity
    Zhou, J
    Wen, C
    Zhang, Y
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (03) : 504 - 511
  • [23] Adaptive fuzzy control of switched nonlinear systems with uncertain dead-zone: A mode-dependent fuzzy dead-zone model
    Chen, Yanxian
    Liu, Zhi
    Chen, C. L. Philip
    Zhang, Yun
    [J]. NEUROCOMPUTING, 2021, 432 : 133 - 144
  • [24] Visual Servo Control of Uncalibrated Robot System with Dead-zone Input
    Hua, Changchun
    Wang, Yaoqing
    Leng, Jing
    [J]. 2012 12TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS & VISION (ICARCV), 2012, : 1268 - 1273
  • [25] Bilateral Adaptive Control of Nonlinear Teleoperation Systems With Uncertain Dynamics and Dead-Zone
    Liu, Xia
    Tavakoli, Mahdi
    [J]. JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2018, 140 (12):
  • [26] Adaptive Neural Control of Nonlinear Systems With Unknown Control Directions and Input Dead-Zone
    Wang, Huanqing
    Karimi, Hamid Reza
    Liu, Peter Xiaoping
    Yang, Hongyan
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2018, 48 (11): : 1897 - 1907
  • [27] Exact tracking control of nonlinear systems with time delays and dead-zone input
    Zhang, Zhengqiang
    Xu, Shengyuan
    Zhang, Baoyong
    [J]. AUTOMATICA, 2015, 52 : 272 - 276
  • [28] Adaptive fuzzy control for unknown nonlinear systems with perturbed dead-zone inputs
    Li P.
    Jin F.-J.
    [J]. Zidonghua Xuebao/ Acta Automatica Sinica, 2010, 36 (04): : 573 - 579
  • [29] Adaptive regulation of uncertain nonlinear systems with dead-zone
    Ma, Hong-Jun
    Yang, Guang-Hong
    [J]. 47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 1950 - 1955
  • [30] Adaptive output dead-zone compensation
    Tian, M
    Tao, G
    [J]. PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 1157 - 1161