Consistent two-population lattice Boltzmann model for thermal flows

被引:64
|
作者
Karlin, I. V. [1 ]
Sichau, D. [1 ]
Chikatamarla, S. S. [1 ]
机构
[1] ETH, Aerothermochem & Combust Syst Lab, CH-8092 Zurich, Switzerland
来源
PHYSICAL REVIEW E | 2013年 / 88卷 / 06期
基金
欧洲研究理事会;
关键词
NAVIER-STOKES EQUATION; TURBULENT FLOWS; BGK MODELS; SIMULATIONS; CONVECTION;
D O I
10.1103/PhysRevE.88.063310
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Theory of two-population lattice Boltzmann equations for thermal flow simulations is revisited. The present approach makes use of a consistent division of the conservation laws between the two lattices, where mass and the momentum are conserved quantities on the first lattice, and the energy is conserved quantity of the second lattice. The theory of such a division is developed, and the advantage of energy conservation in the model construction is demonstrated in detail. The present fully local lattice Boltzmann theory is specified on the standard lattices for the simulation of thermal flows. Extension to the subgrid entropic lattice Boltzmann formulation is also given. The theory is validated with a set of standard two-dimensional simulations including planar Couette flow and natural convection in two dimensions.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Two-population dynamics in a growing network model
    Ivanova, Kristinka
    Iordanov, Ivan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (04) : 1811 - 1821
  • [42] Thermal lattice Boltzmann in two dimensions
    Siebert, Diogo Nardelli
    Hegele, Luiz Adolfo, Jr.
    Surmas, Rodrigo
    Dos Santos, Luis Orlando Emerich
    Philippi, Paulo Cesar
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2007, 18 (04): : 546 - 555
  • [43] Consistent and conservative lattice Boltzmann method for axisymmetric multiphase electrohydrodynamic flows
    Liu, Xi
    Chai, Zhenhua
    Shi, Baochang
    Yuan, Xiaolei
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 468
  • [44] Consistent Forcing Scheme in the Simplified Lattice Boltzmann Method for Incompressible Flows
    Gao, Yuan
    Yang, Liuming
    Yu, Yang
    Hou, Guoxiang
    Hou, Zhongbao
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2021, 30 (05) : 1427 - 1452
  • [45] Simple lattice Boltzmann model for traffic flows
    Yan, GW
    Hu, SX
    ACTA MECHANICA SINICA, 2000, 16 (01) : 70 - 74
  • [46] Modified lattice Boltzmann model for axisymmetric flows
    Reis, T.
    Phillips, T. N.
    PHYSICAL REVIEW E, 2007, 75 (05):
  • [47] Adaptive Lattice Boltzmann Model for Compressible Flows
    孙成海
    王保国
    沈孟育
    Tsinghua Science and Technology, 2000, (01) : 43 - 46
  • [48] A Thermodynamically Consistent Phase-Field Lattice Boltzmann Method for Two-Phase Electrohydrodynamic Flows
    Xiong, Fang
    Wang, Lei
    Huang, Jiangxu
    Luo, Kang
    JOURNAL OF SCIENTIFIC COMPUTING, 2025, 103 (01)
  • [49] SIMPLE LATTICE BOLTZMANN MODEL FOR TRAFFIC FLOWS
    闫广武
    胡守信
    Acta Mechanica Sinica , 2000, (01) : 70 - 74
  • [50] Simple lattice Boltzmann model for traffic flows
    Yan, Guangwu
    Hu, Shouxin
    Acta Mechanica Sinica/Lixue Xuebao, 2000, 16 (01): : 70 - 74