Consistent two-population lattice Boltzmann model for thermal flows

被引:64
|
作者
Karlin, I. V. [1 ]
Sichau, D. [1 ]
Chikatamarla, S. S. [1 ]
机构
[1] ETH, Aerothermochem & Combust Syst Lab, CH-8092 Zurich, Switzerland
来源
PHYSICAL REVIEW E | 2013年 / 88卷 / 06期
基金
欧洲研究理事会;
关键词
NAVIER-STOKES EQUATION; TURBULENT FLOWS; BGK MODELS; SIMULATIONS; CONVECTION;
D O I
10.1103/PhysRevE.88.063310
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Theory of two-population lattice Boltzmann equations for thermal flow simulations is revisited. The present approach makes use of a consistent division of the conservation laws between the two lattices, where mass and the momentum are conserved quantities on the first lattice, and the energy is conserved quantity of the second lattice. The theory of such a division is developed, and the advantage of energy conservation in the model construction is demonstrated in detail. The present fully local lattice Boltzmann theory is specified on the standard lattices for the simulation of thermal flows. Extension to the subgrid entropic lattice Boltzmann formulation is also given. The theory is validated with a set of standard two-dimensional simulations including planar Couette flow and natural convection in two dimensions.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Theory of the lattice Boltzmann equation: Lattice Boltzmann model for axisymmetric flows
    Guo, Zhaoli
    Han, Haifeng
    Shi, Baochang
    Zheng, Chuguang
    PHYSICAL REVIEW E, 2009, 79 (04):
  • [22] A lattice Boltzmann model for axisymmetric thermal flows through porous media
    Rong, Fumei
    Guo, Zhaoli
    Chai, Zhenhua
    Shi, Baochang
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2010, 53 (23-24) : 5519 - 5527
  • [23] A lattice Boltzmann model for blood flows
    Liu, Yanhong
    APPLIED MATHEMATICAL MODELLING, 2012, 36 (07) : 2888 - 2895
  • [24] A lattice Boltzmann model for groundwater flows
    Zhou, Jian Guo
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2007, 18 (06): : 973 - 991
  • [25] Lattice Boltzmann model for ultrarelativistic flows
    Mohseni, F.
    Mendoza, M.
    Succi, S.
    Herrmann, H. J.
    PHYSICAL REVIEW D, 2013, 87 (08):
  • [26] An improved multiple-relaxation-time lattice Boltzmann model for incompressible thermal flows in two dimensions
    Feng, Xiangbo
    Zeng, Jialin
    Ge, Yuan
    Liu, Fuquan
    Yu, Tao
    Liu, Qing
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2025, 240
  • [27] A two-relaxation-time lattice Boltzmann model for simulating incompressible thermal flows in porous media
    Liu, Qing
    Kang, Wanting
    Zeng, Yuxia
    Wang, Xin
    Yu, Tao
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2024, 197
  • [28] Lattice Boltzmann equation for axisymmetric thermal flows
    Zheng, Lin
    Shi, Baochang
    Guo, Zhaoli
    Zheng, Chuguang
    COMPUTERS & FLUIDS, 2010, 39 (06) : 945 - 952
  • [29] Thermal lattice Boltzmann method for multiphase flows
    Kupershtokh, Alexander L.
    Medvedev, Dmitry A.
    Gribanov, Igor I.
    PHYSICAL REVIEW E, 2018, 98 (02)
  • [30] A curvilinear lattice Boltzmann scheme for thermal flows
    Barraza, J. A. Reyes
    Deiterding, R.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 202 : 405 - 420