Obtaining shape from Scanning Electron Microscope using Hopfield neural network

被引:0
|
作者
Iwahori, Y
Kawanaka, H
Fukui, S
Funahashi, K
机构
[1] Nagoya Inst Technol, Showa Ku, Nagoya, Aichi 4668555, Japan
[2] Aichi Univ Educ, Kariya, Aichi 4488542, Japan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the environment of the SEM (Scanning Electron Microscope), it is necessary to establish the technology of recovering 3D shape of a target object from the observed 2D shading image. SEM has the function to rotate the object stand to some extent. This paper uses this principle and proposes a new method to recover the object shape using two shading images taken during the rotation. The proposed method uses the optimization of the energy function using Hopfield neural network, which is based on the standard regularization theory. It is also important to give the initial vector that is close to the true optimal solution vector. Computer simulation evaluates the essential ability of the proposed method. Further, the real experiments for the SEM images are also demonstrated and discussed.
引用
收藏
页码:632 / 639
页数:8
相关论文
共 50 条
  • [31] Micromanipulation system using scanning electron microscope
    Nakazato, Y.
    Yuasa, T.
    Sekine, G.
    Miyazawa, H.
    Jin, M.
    Takeuchi, S.
    Ariga, Y.
    Murakawa, M.
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2009, 15 (06): : 859 - 864
  • [32] MICROMORPHOLOGY OF FEATHERS USING SCANNING ELECTRON MICROSCOPE
    DAVIES, A
    JOURNAL OF THE FORENSIC SCIENCE SOCIETY, 1970, 10 (03): : 165 - &
  • [33] OBSERVATION OF DENDRITES GROWN FROM MELT USING SCANNING ELECTRON MICROSCOPE
    STATHAM, CD
    KOTLER, GR
    JOURNAL OF CRYSTAL GROWTH, 1971, 10 (01) : 115 - &
  • [34] An Optimized Deep Convolutional Neural Network to Identify Nanoscience Scanning Electron Microscope Images Using Social Ski Driver Algorithm
    Ezzat, Dalia
    Taha, Mohamed Hamed N.
    Hassanien, Aboul Ella
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT SYSTEMS AND INFORMATICS 2019, 2020, 1058 : 492 - 501
  • [35] MEASUREMENT OF SURFACE SHAPE BY SCANNING ELECTRON MICROSCOPE. (USING DETECTION METHOD OF NORMAL DIRECTION).
    O-Hori, Masanori
    Sato, Hisayoshi
    Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 1986, 52 (483): : 2974 - 2981
  • [36] BOUNDARY DEPTH INFORMATION USING HOPFIELD NEURAL NETWORK
    Xu, Sheng
    Wang, Ruisheng
    XXIII ISPRS CONGRESS, COMMISSION V, 2016, 41 (B5): : 139 - 146
  • [37] CT image labeling using hopfield neural network
    Kovacevic, D
    Loncaric, S
    MELECON '98 - 9TH MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, VOLS 1 AND 2, 1998, : 44 - 47
  • [38] Feasibility of a Hopfield Neural Network Using DNA Molecules
    Karabay, Dundar
    Hughes, Bradley S. T.
    Mills, A. P., Jr.
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2012, 9 (01) : 159 - 171
  • [39] Optimal Scheduling Algorithm Using Hopfield Neural Network
    Jee, Sun-Ho
    Cho, Yong-Chul
    Zhang, Liang
    Cho, Hyun-Chan
    Kang, Hee-Sun
    IMECS 2009: INTERNATIONAL MULTI-CONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, VOLS I AND II, 2009, : 189 - +
  • [40] Analysis of cortical connectivity using Hopfield neural network
    Dixit, S
    Mosier, K
    NEUROCOMPUTING, 2004, 58 : 1163 - 1170