Active open-loop control of elastic turbulence

被引:15
|
作者
van Buel, Reinier [1 ]
Stark, Holger [1 ]
机构
[1] Tech Univ Berlin, Inst Theoret Phys, Hardenbergstr 36, D-10623 Berlin, Germany
关键词
TAYLOR-COUETTE FLOW; VISCOELASTIC FLUID; SECONDARY FLOWS; INSTABILITY; OSCILLATIONS; TRANSITION;
D O I
10.1038/s41598-020-72402-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We demonstrate through numerical solutions of the Oldroyd-B model in a two-dimensional Taylor-Couette geometry that the onset of elastic turbulence in a viscoelastic fluid can be controlled by imposed shear-rate modulations, one form of active open-loop control. Slow modulations display rich and complex behavior where elastic turbulence is still present, while it vanishes for fast modulations and a laminar response with the Taylor-Couette base flow is recovered. We find that the transition from the laminar to the turbulent state is supercritical and occurs at a critical Deborah number. In the state diagram of both control parameters, Weissenberg versus Deborah number, we identify the region of elastic turbulence. We also quantify the transition by the flow resistance, for which we derive an analytic expression in the laminar regime within the linear Oldroyd-B model. Finally, we provide an approximation for the transition line in the state diagram introducing an effective critical Weissenberg number in comparison to constant shear. Deviations from the numerical result indicate that the physics behind the observed laminar-to-turbulent transition is more complex under time-modulated shear flow.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Unified approach for open-loop optimal control
    Imura, Y.
    Naidu, D. S.
    [J]. OPTIMAL CONTROL APPLICATIONS & METHODS, 2007, 28 (02): : 59 - 75
  • [42] OPEN-LOOP CONTROL OF NONLINEAR-SYSTEMS
    BREEDEN, JL
    [J]. PHYSICS LETTERS A, 1994, 190 (3-4) : 264 - 272
  • [43] Open-Loop Optimal Temperature Control in Greenhouses
    Van Henten, E. J.
    Bontsema, J.
    [J]. PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON HIGH TECHNOLOGY FOR GREENHOUSE SYSTEM MANAGEMENT, VOLS 1 AND 2, 2008, (801): : 629 - 635
  • [44] From open-loop learning to closed-loop control
    Jansson, H
    Hjalmarsson, H
    [J]. PROCEEDINGS OF THE 41ST IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 2002, : 4209 - 4214
  • [45] Two methods to eliminate the elastic influence of open-loop mechanism
    [J]. Jixie Kexue Yu Jishu, 5 (774-776, 794):
  • [46] Active Open-Loop Control of Plates with Multiple Piezoelectric Patches via the Maximum Principle
    Sadek, I. S.
    Kucuk, I.
    Adali, S.
    [J]. MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2014, 21 (09) : 772 - 779
  • [47] Numerical investigation of chatter suppression in milling using active fixtures in open-loop control
    Sallese, Lorenzo
    Grossi, Niccolo
    Scippa, Antonio
    Campatelli, Gianni
    [J]. JOURNAL OF VIBRATION AND CONTROL, 2018, 24 (09) : 1757 - 1773
  • [48] An Open-Loop Pole-Zero Placement Method for Active Noise Control Headphones
    Liang, Keng-Wei
    Hu, Jwu-Sheng
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2017, 25 (04) : 1278 - 1283
  • [49] An open-loop control system for open-channel flows
    Bautista, E
    Clemmens, AJ
    [J]. WATER RESOURCES ENGINEERING 98, VOLS 1 AND 2, 1998, : 1852 - 1857
  • [50] A novel open-loop control method for a current-source active power filter
    Salo, M
    Tuusa, H
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2003, 50 (02) : 313 - 321