Testing Euclidean Minimum Spanning Trees in the Plane

被引:8
|
作者
Czumaj, Artur [1 ,2 ]
Sohler, Christian [3 ]
机构
[1] Univ Warwick, Dept Comp Sci, Coventry CV4 7AL, W Midlands, England
[2] Univ Warwick, Ctr Discrete Math & Its Applicat, Coventry CV4 7AL, W Midlands, England
[3] Univ Bonn, Dept Comp Sci, D-53117 Bonn, Germany
基金
英国工程与自然科学研究理事会;
关键词
Euclidean minimum spanning tree; property testing; randomized algorithms;
D O I
10.1145/1367064.1367071
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a Euclidean graph G over a set P of n points in the plane, we are interested in verifying whether G is a Euclidean minimum spanning tree (EMST) of P or G differs from it in more than epsilon n edges. We assume that G is given in adjacency list representation and the point/vertex set P is given in an array. We present a property testing algorithm that accepts graph G if it is an EMST of P and that rejects with probability at least 2/3 if G differs from every EMST of P in more than epsilon n edges. Our algorithm runs in O(root n/epsilon . log(2)(n/epsilon)) time and has a query complexity of O(root n/epsilon . log(n/epsilon)).
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Constructing Euclidean minimum spanning trees and all nearest neighbors on reconfigurable meshes
    Ohio State Univ, Columbus, United States
    IEEE Trans Parallel Distrib Syst, 8 (806-817):
  • [22] Time-Space Trade-Offs for Computing Euclidean Minimum Spanning Trees
    Banyassady, Bahareh
    Barba, Luis
    Mulzer, Wolfgang
    LATIN 2018: THEORETICAL INFORMATICS, 2018, 10807 : 108 - 119
  • [23] TIME-SPACE TRADE-OFFS FOR COMPUTING EUCLIDEAN MINIMUM SPANNING TREES
    Banyassady, Bahareh
    Barba, Luis
    Mulzer, Wolfgang
    JOURNAL OF COMPUTATIONAL GEOMETRY, 2020, 11 (01) : 525 - 547
  • [24] On generalized minimum spanning trees
    Feremans, C
    Labbé, M
    Laporte, G
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2001, 134 (02) : 457 - 458
  • [25] On partitioning minimum spanning trees
    Guttmann-Beck, Nili
    Hassin, Refael
    Stern, Michal
    DISCRETE APPLIED MATHEMATICS, 2024, 359 : 45 - 54
  • [26] The minimum labeling spanning trees
    Chang, RS
    Leu, SJ
    INFORMATION PROCESSING LETTERS, 1997, 63 (05) : 277 - 282
  • [27] Successive minimum spanning trees
    Janson, Svante
    Sorkin, Gregory B.
    RANDOM STRUCTURES & ALGORITHMS, 2022, 61 (01) : 126 - 172
  • [28] The saga of minimum spanning trees
    Mares, Martin
    COMPUTER SCIENCE REVIEW, 2008, 2 (03) : 165 - 221
  • [29] CLUSTERING WITH MINIMUM SPANNING TREES
    Zhou, Yan
    Grygorash, Oleksandr
    Hain, Thomas F.
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2011, 20 (01) : 139 - 177
  • [30] On Steiner trees and minimum spanning trees in hypergraphs
    Polzin, T
    Daneshmand, SV
    OPERATIONS RESEARCH LETTERS, 2003, 31 (01) : 12 - 20