Quasi-Free-Standing Graphene Monolayer on a Ni Crystal through Spontaneous Na Intercalation

被引:20
|
作者
Park, Young S. [1 ]
Park, Jae H. [2 ]
Hwang, Han N. [3 ]
Laishram, Tomba Singh [4 ,5 ]
Kim, Kwang S. [4 ,5 ]
Kang, Myung H. [2 ]
Hwang, Chan C. [3 ]
机构
[1] Ulsan Natl Inst Sci & Technol, Sch Life Sci, Ulsan 689798, South Korea
[2] Pohang Univ Sci & Technol, Dept Phys, Pohang 790784, South Korea
[3] Pohang Univ Sci & Technol, Pohang Accelerator Lab, Beamline Res Div, Pohang 790784, South Korea
[4] UNIST, Ctr Superfunct Mat, Dept Chem, Ulsan 689798, South Korea
[5] UNIST, Dept Phys, Sch Nat Sci, Ulsan 689798, South Korea
来源
PHYSICAL REVIEW X | 2014年 / 4卷 / 03期
基金
新加坡国家研究基金会;
关键词
ANGLE-RESOLVED PHOTOEMISSION; CHEMICAL-VAPOR-DEPOSITION; AUGMENTED-WAVE METHOD; EPITAXIAL GRAPHENE; GRAPHITE MONOLAYER; LARGE-AREA; FILMS; NI(111); SURFACE; LAYERS;
D O I
10.1103/PhysRevX.4.031016
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Graphene on metal substrates often shows different electronic properties from isolated graphene because of graphene-substrate interactions. One needs to remove the metals with acids and then to transfer graphene to weakly interacting substrates to recover electrical properties inherent in graphene. This process is not easy and besides causes undesirable tears, defects, and impurities in graphene. Here, we report a method to recover the electronic structure of graphene from a strongly interacting Ni substrate by spontaneous Na intercalation. In order to characterize the intercalation process, the density-functional-theory calculations and angle-resolved photoemission-spectroscopy (ARPES) and scanning-tunneling-microscopy (STM) measurements are carried out. From the density-functional-theory calculations, Na atoms energetically prefer interface intercalation to surface adsorption for the graphene/Ni(111) surface. Unlike most intercalants, Na atoms intercalate spontaneously at room temperature due to a tiny diffusion barrier, which is consistent with our temperature-dependent ARPES and core-level photoemission spectroscopy, and with our submonolayer ARPES and STM results at room temperature. As a result of the spontaneous intercalation, the electronic structure of graphene is almost recovered, as confirmed by the Dirac cone with a negligible band gap in ARPES and the sixfold symmetry in STM.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] The impact of partial H intercalation on the quasi-free-standing properties of graphene on SiC(0001)
    Szary, Maciej J.
    El-Ahmar, Semir
    Ciuk, Tymoteusz
    APPLIED SURFACE SCIENCE, 2021, 541 (541)
  • [12] Preparation of Quasi-Free-Standing Graphene with a Super Large Interlayer Distance by Methane Intercalation
    Huang, Qingsong
    Chen, Xiaolong
    Lin, Jingjing
    Li, Kang
    Jia, Yuping
    Liu, Jun
    Guo, Liwei
    Wang, Wenjun
    Wang, Gang
    JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (42): : 20538 - 20545
  • [13] Modification of the Electronic Structure of Quasi-Free-Standing Graphene by the Adsorption and Intercalation of Mn Atoms
    A. A. Gogina
    A. G. Rybkin
    A. M. Shikin
    A. V. Tarasov
    L. Petaccia
    G. Di Santo
    I. A. Eliseyev
    S. P. Lebedev
    V. Yu. Davydov
    I. I. Klimovskikh
    Journal of Experimental and Theoretical Physics, 2021, 132 : 906 - 916
  • [14] Modification of the Electronic Structure of Quasi-Free-Standing Graphene by the Adsorption and Intercalation of Mn Atoms
    Gogina, A. A.
    Rybkin, A. G.
    Shikin, A. M.
    Tarasov, A. V.
    Petaccia, L.
    Di Santo, G.
    Eliseyev, I. A.
    Lebedev, S. P.
    Davydov, V. Yu.
    Klimovskikh, I. I.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2021, 132 (06) : 906 - 916
  • [15] Charge neutrality of quasi-free-standing monolayer graphene induced by the intercalated Sn layer
    Kim, Hidong
    Dugerjav, Otgonbayar
    Lkhagvasuren, Altaibaatar
    Seo, Jae M.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (13)
  • [16] Atomic and electronic structure of Si dangling bonds in quasi-free-standing monolayer graphene
    Murata, Yuya
    Cavallucci, Tommaso
    Tozzini, Valentina
    Pavlicek, Niko
    Gross, Leo
    Meyer, Gerhard
    Takamura, Makoto
    Hibino, Hiroki
    Beltram, Fabio
    Heun, Stefan
    NANO RESEARCH, 2018, 11 (02) : 864 - 873
  • [17] Atomic and electronic structure of Si dangling bonds in quasi-free-standing monolayer graphene
    Yuya Murata
    Tommaso Cavallucci
    Valentina Tozzini
    Niko Pavliček
    Leo Gross
    Gerhard Meyer
    Makoto Takamura
    Hiroki Hibino
    Fabio Beltram
    Stefan Heun
    Nano Research, 2018, 11 : 864 - 873
  • [18] Homogeneous Large-Area Quasi-Free-Standing Monolayer and Bilayer Graphene on SiC
    Pakdehi, D. Momeni
    Pierz, K.
    Wundrack, S.
    Aprojanz, J.
    Nguyen, T. T. N.
    Dziomba, T.
    Hohls, F.
    Bakin, A.
    Stosch, R.
    Tegenkamp, C.
    Ahlers, F. J.
    Schumacher, H. W.
    ACS APPLIED NANO MATERIALS, 2019, 2 (02) : 844 - 852
  • [19] Quasi-Free-Standing Epitaxial Graphene on SiC (0001) by Fluorine Intercalation from a Molecular Source
    Wong, Swee Liang
    Huang, Han
    Wang, Yuzhan
    Cao, Liang
    Qi, Dongchen
    Santoso, Iman
    Chen, Wei
    Wee, Andrew Thye Shen
    ACS NANO, 2011, 5 (09) : 7662 - 7668
  • [20] Observation of intercalation-driven zone folding in quasi-free-standing graphene energy bands
    Lin, Yi
    Chen, Ge
    Sadowski, Jerzy T.
    Li, Yunzhe
    Tenney, Samuel A.
    Dadap, Jerry, I
    Hybertsen, Mark S.
    Osgood, Richard M., Jr.
    PHYSICAL REVIEW B, 2019, 99 (03)