Recent progresses in outcome-dependent sampling with failure time data

被引:16
|
作者
Ding, Jieli [1 ]
Lu, Tsui-Shan [2 ]
Cai, Jianwen [3 ]
Zhou, Haibo [3 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hunan, Peoples R China
[2] Natl Taiwan Normal Univ, Dept Math, Taipei, Taiwan
[3] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Case-cohort design; ODS design; Failure time data; CASE-COHORT DESIGN; BIVARIATE SURVIVAL-DATA; ADDITIVE HAZARDS MODEL; BINARY RESPONSE DATA; LENGTH-BIASED DATA; EMPIRICAL LIKELIHOOD METHOD; MULTIPLE DISEASE OUTCOMES; REGRESSION-MODELS; LOGISTIC-REGRESSION; STATISTICAL-INFERENCE;
D O I
10.1007/s10985-015-9355-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An outcome-dependent sampling (ODS) design is a retrospective sampling scheme where one observes the primary exposure variables with a probability that depends on the observed value of the outcome variable. When the outcome of interest is failure time, the observed data are often censored. By allowing the selection of the supplemental samples depends on whether the event of interest happens or not and oversampling subjects from the most informative regions, ODS design for the time-to-event data can reduce the cost of the study and improve the efficiency. We review recent progresses and advances in research on ODS designs with failure time data. This includes researches on ODS related designs like case-cohort design, generalized case-cohort design, stratified case-cohort design, general failure-time ODS design, length-biased sampling design and interval sampling design.
引用
收藏
页码:57 / 82
页数:26
相关论文
共 50 条
  • [21] Causal Bounds for Outcome-Dependent Sampling in Observational Studies
    Gabriel, Erin E.
    Sachs, Michael C.
    Sjolander, Arvid
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (538) : 939 - 950
  • [22] Graphical Models for Inference Under Outcome-Dependent Sampling
    Didelez, Vanessa
    Kreiner, Svend
    Keiding, Niels
    STATISTICAL SCIENCE, 2010, 25 (03) : 368 - 387
  • [23] Outcome-dependent sampling in cluster-correlated data settings with application to hospital profiling
    McGee, Glen
    Schildcrout, Jonathan
    Normand, Sharon-Lise
    Haneuse, Sebastien
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2020, 183 (01) : 379 - 402
  • [24] The effect of misspecification of random effects distributions in clustered data settings with outcome-dependent sampling
    Neuhaus, John M.
    Mcculloch, Charles E.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2011, 39 (03): : 488 - 497
  • [25] Optimal sampling allocation for outcome-dependent designs in cluster-correlated data settings
    Rivera-Rodriguez, Claudia
    Haneuse, Sebastien
    Sauer, Sara
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2022, 31 (12) : 2400 - 2414
  • [26] Outcome-dependent sampling in cluster-correlated data settings with application to hospital profiling
    McGee, Glen
    Schildcrout, Jonathan
    Normand, Sharon-Lise
    Haneuse, Sebastien
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2019, : 379 - 402
  • [27] Estimation of a partially linear additive model for data from an outcome-dependent sampling design with a continuous outcome
    Tan, Ziwen
    Qin, Guoyou
    Zhou, Haibo
    BIOSTATISTICS, 2016, 17 (04) : 663 - 676
  • [28] Regression analysis for a summed missing data problem under an outcome-dependent sampling scheme
    Ding, Jieli
    Liu, Yanyan
    Peden, David B.
    Kleeberger, Steven R.
    Zhou, Haibo
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2012, 40 (02): : 282 - 303
  • [29] An estimated likelihood method for continuous outcome regression models with outcome-dependent sampling
    Weaver, MA
    Zhou, HB
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (470) : 459 - 469
  • [30] Statistical inference for the additive hazards model under outcome-dependent sampling
    Yu, Jichang
    Liu, Yanyan
    Sandler, Dale P.
    Zhou, Haibo
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2015, 43 (03): : 436 - 453