机构:
Harvard Med Sch, Dept Global Hlth & Social Med, Boston, MA 02115 USAUniv Auckland, Dept Stat, Level 3,Bldg 303-329,38 Princes St, Auckland, New Zealand
In clinical and public health studies, it is often the case that some variables relevant to the analysis are too difficult or costly to measure for all individuals in the population of interest. Rather, a subsample of these individuals must be identified for additional data collection. A sampling scheme that incorporates readily-available information for the entire target population at the design stage can increase the statistical efficiency of the intended analysis. While there is no universally optimal sampling design, under certain principles and restrictions, a well-designed and efficient sampling strategy can be implemented. In two-phase designs, efficiency can be gained by stratifying on the outcome and/or auxiliary information that is known at phase I. Additional gains in efficiency can be obtained by determining the optimal allocation of the sample sizes across the strata, which depends on the quantity that is being estimated. In this paper, the inference is concerned with one or multiple regression parameter(s) where the study units are naturally clustered and, thus, exhibit correlation in outcomes. We propose several allocation strategies within the framework of two-phase designs for the estimation of the regression parameter(s) obtained from weighted generalized estimating equations. The proposed methods extend existing theory to address the objective of the estimating regression parameters in cluster-correlated data settings by minimizing the asymptotic variance of the estimator subject to a fixed sample size. Through a comprehensive simulation study, we show that the proposed allocation schemes have the potential to yield substantial efficiency gains over alternative strategies.
机构:
Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USAHarvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
Sauer, Sara
Hedt-Gauthier, Bethany
论文数: 0引用数: 0
h-index: 0
机构:
Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
Harvard Med Sch, Dept Global Hlth & Social Med, Boston, MA USAHarvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
Hedt-Gauthier, Bethany
Haneuse, Sebastien
论文数: 0引用数: 0
h-index: 0
机构:
Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USAHarvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
机构:
Harvard Med Sch, Dept Global Hlth & Social Med, Boston, MA 02115 USA
Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA USAHarvard Med Sch, Dept Global Hlth & Social Med, Boston, MA 02115 USA
Sauer, Sara
Hedt-Gauthier, Bethany
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Med Sch, Dept Global Hlth & Social Med, Boston, MA 02115 USA
Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA USAHarvard Med Sch, Dept Global Hlth & Social Med, Boston, MA 02115 USA
Hedt-Gauthier, Bethany
Haneuse, Sebastien
论文数: 0引用数: 0
h-index: 0
机构:
Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA USAHarvard Med Sch, Dept Global Hlth & Social Med, Boston, MA 02115 USA
机构:
Univ Calif San Francisco, Dept Epidemiol & Biostat, San Francisco, CA 94143 USAUniv Calif San Francisco, Dept Epidemiol & Biostat, San Francisco, CA 94143 USA
Neuhaus, John M.
Mcculloch, Charles E.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Francisco, Dept Epidemiol & Biostat, San Francisco, CA 94143 USAUniv Calif San Francisco, Dept Epidemiol & Biostat, San Francisco, CA 94143 USA
Mcculloch, Charles E.
[J].
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE,
2011,
39
(03):
: 488
-
497
机构:
Vanderbilt Univ, Sch Med, Dept Stat, Med Ctr North S 2323, Nashville, TN 37232 USAVanderbilt Univ, Sch Med, Dept Stat, Med Ctr North S 2323, Nashville, TN 37232 USA
Schildcrout, Jonathan S.
Heagerty, Patrick J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Washington, Dept Biostat, Seattle, WA 98105 USAVanderbilt Univ, Sch Med, Dept Stat, Med Ctr North S 2323, Nashville, TN 37232 USA