About fractional quantization and fractional variational principles

被引:63
|
作者
Baleanu, Dumitru [1 ,2 ]
机构
[1] Cankaya Univ, Dept Math & Comp Sci, Fac Arts & Sci, TR-06530 Ankara, Turkey
[2] Inst Space Sci, R-76900 Bucharest, Romania
关键词
Fractional variational principles; Fractional systems; Infinite-dimensional systems; Hamiltonian systems; FORMULATION;
D O I
10.1016/j.cnsns.2008.10.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
in this paper, a new method of finding the fractional Euler-Lagrange equations within Caputo derivative is proposed by making use of the fractional generalization of the classical Fad di Bruno formula. The fractional Euler-Lagrange and the fractional Hamilton equations are obtained within the 1 + 1 field formalism. One illustrative example is analyzed. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:2520 / 2523
页数:4
相关论文
共 50 条
  • [41] FRACTIONAL QUANTIZATION IN ULTRANARROW ELECTRON CHANNELS
    SMITH, TP
    LEE, KY
    HONG, JM
    KNOEDLER, CM
    ARNOT, H
    KERN, DP
    PHYSICAL REVIEW B, 1988, 38 (02): : 1558 - 1561
  • [42] Towards a combined fractional mechanics and quantization
    Malinowska, Agnieszka B.
    Torres, Delfim F. M.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2012, 15 (03) : 407 - 417
  • [43] Fractional Canonical Quantization: a Parallel with Noncommutativity
    Godinho, Cresus F. L.
    Weberszpil, Jose
    Helayel Neto, J. A.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2014, 53 (07) : 2379 - 2395
  • [44] Fractional Backward Stochastic Differential Equations and Fractional Backward Variational Inequalities
    Lucian Maticiuc
    Tianyang Nie
    Journal of Theoretical Probability, 2015, 28 : 337 - 395
  • [45] Fractional Herglotz variational problems with Atangana-Baleanu fractional derivatives
    Zhang, Jianke
    Yin, Luyang
    Zhou, Chang
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [46] A fractional variational iteration method for solving fractional nonlinear differential equations
    Wu, Guo-cheng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (08) : 2186 - 2190
  • [47] Fractional Backward Stochastic Differential Equations and Fractional Backward Variational Inequalities
    Maticiuc, Lucian
    Nie, Tianyang
    JOURNAL OF THEORETICAL PROBABILITY, 2015, 28 (01) : 337 - 395
  • [48] THE LOCAL FRACTIONAL VARIATIONAL ITERATION METHOD A Promising Technology for Fractional Calculus
    Yang, Yong-Ju
    THERMAL SCIENCE, 2020, 24 (04): : 2605 - 2614
  • [49] A spectral framework for fractional variational problems based on fractional Jacobi functions
    Zaky, M. A.
    Doha, E. H.
    Tenreiro Machado, J. A.
    APPLIED NUMERICAL MATHEMATICS, 2018, 132 : 51 - 72
  • [50] Fractional corresponding operator in quantum mechanics and applications: A uniform fractional Schrodinger equation in form and fractional quantization methods
    Zhang Xiao
    Wei Chaozhen
    Liu Yingming
    Luo Maokang
    ANNALS OF PHYSICS, 2014, 350 : 124 - 136