About fractional quantization and fractional variational principles

被引:63
|
作者
Baleanu, Dumitru [1 ,2 ]
机构
[1] Cankaya Univ, Dept Math & Comp Sci, Fac Arts & Sci, TR-06530 Ankara, Turkey
[2] Inst Space Sci, R-76900 Bucharest, Romania
关键词
Fractional variational principles; Fractional systems; Infinite-dimensional systems; Hamiltonian systems; FORMULATION;
D O I
10.1016/j.cnsns.2008.10.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
in this paper, a new method of finding the fractional Euler-Lagrange equations within Caputo derivative is proposed by making use of the fractional generalization of the classical Fad di Bruno formula. The fractional Euler-Lagrange and the fractional Hamilton equations are obtained within the 1 + 1 field formalism. One illustrative example is analyzed. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:2520 / 2523
页数:4
相关论文
共 50 条
  • [31] Quantization of classical fields with fractional derivatives
    Muslih, SI
    Baleanu, D
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2005, 120 (05): : 507 - 512
  • [32] Fractional Fourier transform and geometric quantization
    Chmielowiec, Witold
    Kijowski, Jerzy
    JOURNAL OF GEOMETRY AND PHYSICS, 2012, 62 (06) : 1433 - 1450
  • [33] FLUX QUANTIZATION AND FRACTIONAL CHARGES OF QUARKS
    JEHLE, H
    PHYSICAL REVIEW D, 1975, 11 (08): : 2147 - 2177
  • [34] Towards a combined fractional mechanics and quantization
    Agnieszka B. Malinowska
    Delfim F. M. Torres
    Fractional Calculus and Applied Analysis, 2012, 15 : 407 - 417
  • [35] Fractional Canonical Quantization: a Parallel with Noncommutativity
    Cresus F. L. Godinho
    Jose Weberszpil
    J. A. Helayël Neto
    International Journal of Theoretical Physics, 2014, 53 : 2379 - 2395
  • [36] Stochastic Quantization for the Fractional Edwards Measure
    Bock, Wolfgang
    Fattler, Torben
    Streit, Ludwig
    ACTA APPLICANDAE MATHEMATICAE, 2017, 151 (01) : 81 - 88
  • [37] Stochastic Quantization for the Fractional Edwards Measure
    Wolfgang Bock
    Torben Fattler
    Ludwig Streit
    Acta Applicandae Mathematicae, 2017, 151 : 81 - 88
  • [38] Fedosov Quantization of Fractional Lagrange Spaces
    Dumitru Baleanu
    Sergiu I. Vacaru
    International Journal of Theoretical Physics, 2011, 50 : 233 - 243
  • [39] Fractional quantization and quantum hall effect
    Guerrero, J
    Calixto, M
    Aldaya, V
    PHYSICS OF ATOMIC NUCLEI, 1998, 61 (11) : 1960 - 1965
  • [40] FRACTIONAL QUANTIZATION OF THE HALL-EFFECT
    STORMER, HL
    CHANG, A
    TSUI, DC
    HWANG, JCM
    GOSSARD, AC
    WIEGMANN, W
    PHYSICAL REVIEW LETTERS, 1983, 50 (24) : 1953 - 1956