About fractional quantization and fractional variational principles

被引:63
|
作者
Baleanu, Dumitru [1 ,2 ]
机构
[1] Cankaya Univ, Dept Math & Comp Sci, Fac Arts & Sci, TR-06530 Ankara, Turkey
[2] Inst Space Sci, R-76900 Bucharest, Romania
关键词
Fractional variational principles; Fractional systems; Infinite-dimensional systems; Hamiltonian systems; FORMULATION;
D O I
10.1016/j.cnsns.2008.10.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
in this paper, a new method of finding the fractional Euler-Lagrange equations within Caputo derivative is proposed by making use of the fractional generalization of the classical Fad di Bruno formula. The fractional Euler-Lagrange and the fractional Hamilton equations are obtained within the 1 + 1 field formalism. One illustrative example is analyzed. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:2520 / 2523
页数:4
相关论文
共 50 条
  • [1] On fractional variational principles
    Baleanu, Dumitru
    Muslih, Sami I.
    ADVANCES IN FRACTIONAL CALCULUS: THEORETICAL DEVELOPMENTS AND APPLICATIONS IN PHYSICS AND ENGINEERING, 2007, : 115 - +
  • [2] Fractional variational principles in action
    Baleanu, Dumitru
    PHYSICA SCRIPTA, 2009, T136
  • [3] Fractional variational principles with delay
    Baleanu, Dumitru
    Abdeljawad, Thabet
    Jarad, Fahd
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (31)
  • [4] Complementary variational principles with fractional derivatives
    Atanackovic, Teodor M.
    Janev, Marko
    Pilipovic, Stevan
    Zorica, Dusan
    ACTA MECHANICA, 2012, 223 (04) : 685 - 704
  • [5] New applications of fractional variational principles
    Baleanu, Dumitru
    REPORTS ON MATHEMATICAL PHYSICS, 2008, 61 (02) : 199 - 206
  • [6] Complementary variational principles with fractional derivatives
    Teodor M. Atanackovic
    Marko Janev
    Stevan Pilipovic
    Dusan Zorica
    Acta Mechanica, 2012, 223 : 685 - 704
  • [7] A Stochastic Fractional Calculus with Applications to Variational Principles
    Zine, Houssine
    Torres, Delfim F. M.
    FRACTAL AND FRACTIONAL, 2020, 4 (03) : 1 - 11
  • [8] Fractional variational integrators for fractional variational problems
    Wang, Dongling
    Xiao, Aiguo
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (02) : 602 - 610
  • [9] Fractional quantization
    Laughlin, RB
    USPEKHI FIZICHESKIKH NAUK, 2000, 170 (03): : 292 - 303
  • [10] Fractional Herglotz variational principles with generalized Caputo derivatives
    Garra, Roberto
    Taverna, Giorgio S.
    Torres, Delfim F. M.
    CHAOS SOLITONS & FRACTALS, 2017, 102 : 94 - 98