Tokamak profile prediction using direct gyrokinetic and neoclassical simulation

被引:192
|
作者
Candy, J. [1 ]
Holland, C. [2 ]
Waltz, R. E. [1 ]
Fahey, M. R. [3 ]
Belli, E. [1 ]
机构
[1] Gen Atom Co, San Diego, CA 92186 USA
[2] Univ Calif San Diego, La Jolla, CA 92093 USA
[3] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
关键词
TRANSPORT; DYNAMICS;
D O I
10.1063/1.3167820
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Tokamak transport modeling scenarios, including ITER [ITER Physics Basis Editors, Nucl. Fusion 39, 2137 (1999)] performance predictions, are based exclusively on reduced models for core thermal and particle transport. The reason for this is simple: computational cost. A typical modeling scenario may require the evaluation of thousands of individual transport fluxes (local transport models calculate the energy and particle fluxes across a specified flux surface given fixed profiles). Despite continuous advances in direct gyrokinetic simulation, the cost of an individual simulation remains so high that direct gyrokinetic transport calculations have been avoided. By developing a steady-state iteration scheme suitable for direct gyrokinetic and neoclassical simulations, we can now compute steady-state temperature profiles for DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] plasmas given known plasma sources. The new code, TGYRO, encapsulates the GYRO [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] code, for turbulent transport, and the NEO [E. A. Belli and J. Candy, Plasma Phys. Controlled Fusion 50, 095010 (2008)] code, for kinetic neoclassical transport. Results for DIII-D L-mode discharge 128913 are given, with computational and experimental results consistent in the region 0 <= r/a <= 0.8. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3167820]
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Neoclassical simulation of tokamak plasmas using the continuum gyrokinetic code TEMPEST
    Xu, X. Q.
    PHYSICAL REVIEW E, 2008, 78 (01):
  • [2] Neoclassical simulation of tokamak plasmas using the continuum gyrokinetic code TEMPEST (vol 78, art no 016406, 2008)
    Xu, X. Q.
    PHYSICAL REVIEW E, 2008, 78 (02):
  • [3] GYROKINETIC PARTICLE SIMULATION OF NEOCLASSICAL TRANSPORT
    LIN, Z
    TANG, WM
    LEE, WW
    PHYSICS OF PLASMAS, 1995, 2 (08) : 2975 - 2988
  • [4] Gyrokinetic particle simulation of neoclassical transport in the pedestal/scrape-off region of a tokamak plasma
    Ku, S.
    Chang, C-S
    Adams, M.
    Cummings, J.
    Hinton, F.
    Keyes, D.
    Klasky, S.
    Lee, W.
    Lin, Z.
    Parker, S.
    SCIDAC 2006: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2006, 46 : 87 - 91
  • [5] Gyrokinetic simulation of collisionless reconnection in a tokamak
    Naitou, H
    Sonoda, T
    Kitagawa, H
    Tokuda, S
    ICPP 96 CONTRIBUTED PAPERS - PROCEEDINGS OF THE 1996 INTERNATIONAL CONFERENCE ON PLASMA PHYSICS, VOLS 1 AND 2, 1997, : 542 - 545
  • [6] Global gyrokinetic simulation of tokamak transport
    Furnish, G
    Horton, W
    Kishimoto, Y
    LeBrun, M
    Tajima, T
    PHYSICS OF PLASMAS, 1999, 6 (04) : 1227 - 1245
  • [7] Simulation of neoclassical transport with the continuum gyrokinetic code COGENT
    Dorf, M. A.
    Cohen, R. H.
    Dorr, M.
    Rognlien, T.
    Hittinger, J.
    Compton, J.
    Colella, P.
    Martin, D.
    McCorquodale, P.
    PHYSICS OF PLASMAS, 2013, 20 (01)
  • [8] Visualization techniques for the gyrokinetic tokamak simulation code
    Feibush, Eliot
    Ethier, Stephane
    Yan, Jason
    Yao, Alexander
    FRONTIERS IN PHYSICS, 2025, 13
  • [9] Gyrokinetic simulation of turbulence and transport in the SPARC tokamak
    Howard, N. T.
    Rodriguez-Fernandez, P.
    Holland, C.
    Rice, J. E.
    Greenwald, M.
    Candy, J.
    Sciortino, F.
    PHYSICS OF PLASMAS, 2021, 28 (07)
  • [10] Gyrokinetic simulation of isotope effects in tokamak plasmas
    Lee, WW
    Santoro, RA
    PHYSICS OF PLASMAS, 1997, 4 (01) : 169 - 173