Tokamak profile prediction using direct gyrokinetic and neoclassical simulation

被引:192
|
作者
Candy, J. [1 ]
Holland, C. [2 ]
Waltz, R. E. [1 ]
Fahey, M. R. [3 ]
Belli, E. [1 ]
机构
[1] Gen Atom Co, San Diego, CA 92186 USA
[2] Univ Calif San Diego, La Jolla, CA 92093 USA
[3] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
关键词
TRANSPORT; DYNAMICS;
D O I
10.1063/1.3167820
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Tokamak transport modeling scenarios, including ITER [ITER Physics Basis Editors, Nucl. Fusion 39, 2137 (1999)] performance predictions, are based exclusively on reduced models for core thermal and particle transport. The reason for this is simple: computational cost. A typical modeling scenario may require the evaluation of thousands of individual transport fluxes (local transport models calculate the energy and particle fluxes across a specified flux surface given fixed profiles). Despite continuous advances in direct gyrokinetic simulation, the cost of an individual simulation remains so high that direct gyrokinetic transport calculations have been avoided. By developing a steady-state iteration scheme suitable for direct gyrokinetic and neoclassical simulations, we can now compute steady-state temperature profiles for DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] plasmas given known plasma sources. The new code, TGYRO, encapsulates the GYRO [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] code, for turbulent transport, and the NEO [E. A. Belli and J. Candy, Plasma Phys. Controlled Fusion 50, 095010 (2008)] code, for kinetic neoclassical transport. Results for DIII-D L-mode discharge 128913 are given, with computational and experimental results consistent in the region 0 <= r/a <= 0.8. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3167820]
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Global gyrokinetic particle simulation of turbulence and transport in realistic tokamak geometry
    Wang, WX
    Lin, Z
    Tang, WM
    Lee, WW
    Ethier, S
    Lewandowski, JLV
    Rewoldt, G
    Hahm, TS
    Manickam, J
    SCIDAC 2005: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2005, 16 : 59 - 64
  • [22] Full f gyrokinetic simulation of FT-2 tokamak plasma
    Kiviniemi, T. P.
    Heikkinen, J. A.
    Janhunen, S.
    Henriksson, S. V.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2006, 48 : A327 - A333
  • [23] Neoclassical and turbulent E x B flows in flux-driven gyrokinetic simulations of Ohmic tokamak plasmas
    Niskala, P.
    Gurchenko, A. D.
    Gusakov, E. Z.
    Altukhov, A. B.
    Esipov, L. A.
    Chone, L.
    Kiviniemi, T. P.
    Leerink, S.
    NUCLEAR FUSION, 2018, 58 (11)
  • [24] Gyrokinetic neoclassical study of the bootstrap current in the tokamak edge pedestal with fully non-linear Coulomb collisions
    Hager, Robert
    Chang, C. S.
    PHYSICS OF PLASMAS, 2016, 23 (04)
  • [25] Neoclassical transport benchmark of global full-f gyrokinetic simulation in stellarator configurations
    Matsuoka, Seikichi
    Idomura, Yasuhiro
    Satake, Shinsuke
    PHYSICS OF PLASMAS, 2018, 25 (02)
  • [26] Direct prediction of saturated neoclassical tearing modes in slab using an equilibrium approach
    Balkovic, E.
    Loizu, J.
    Graves, J. P.
    Huang, Y-m
    Smiet, C.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2025, 67 (01)
  • [27] Global gyrokinetic simulation of microturbulence with kinetic electrons in the presence of magnetic island in tokamak
    Fang, K. S.
    Lin, Z.
    PHYSICS OF PLASMAS, 2019, 26 (05)
  • [28] Flux- and gradient-driven global gyrokinetic simulation of tokamak turbulence
    Goerler, Tobias
    Lapillonne, Xavier
    Brunner, Stephan
    Dannert, Tilman
    Jenko, Frank
    Aghdam, Sohrab Khosh
    Marcus, Patrick
    McMillan, Ben F.
    Merz, Florian
    Sauter, Olivier
    Told, Daniel
    Villard, Laurent
    PHYSICS OF PLASMAS, 2011, 18 (05)
  • [29] Electromagnetic global gyrokinetic simulation of shear Alfven wave dynamics in tokamak plasmas
    Nishimura, Y.
    Lin, Z.
    Wang, W. X.
    PHYSICS OF PLASMAS, 2007, 14 (04)
  • [30] An E and B gyrokinetic simulation model for kinetic Alfven waves in tokamak plasmas
    Rosen, M. H.
    Lu, Z. X.
    Hoelzl, M.
    PHYSICS OF PLASMAS, 2022, 29 (02)