GYROKINETIC PARTICLE SIMULATION OF NEOCLASSICAL TRANSPORT

被引:137
|
作者
LIN, Z
TANG, WM
LEE, WW
机构
[1] Princeton Plasma Physics Laboratory, Princeton University, Princeton
关键词
D O I
10.1063/1.871196
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A time varying weighting (delta f) scheme for gyrokinetic particle simulation is applied to a steady-state, multispecies simulation of neoclassical transport. Accurate collision operators conserving momentum and energy are developed and implemented. Simulation results using these operators are found to agree very well with neoclassical theory. For example, it is dynamically demonstrated that like-particle collisions produce no particle flux and that the neoclassical fluxes are ambipolar for an ion-electron plasma. An important physics feature of the present scheme is the introduction of toroidal flow to the simulations. Simulation results are in agreement with the existing analytical neoclassical theory. The poloidal electric field associated with toroidal mass howls found to enhance density gradient-driven electron particle flux and the bootstrap current while reducing temperature gradient-driven flux and current. Finally, neoclassical theory in steep gradient profile relevant to the edge regime is examined by taking into account finite banana width effects. In general, in the present work a valuable new capability for studying important aspects of neoclassical transport inaccessible by conventional analytical calculation processes is demonstrated. (C) 1995 American Institute of Physics.
引用
收藏
页码:2975 / 2988
页数:14
相关论文
共 50 条
  • [1] Simulation of neoclassical transport with the continuum gyrokinetic code COGENT
    Dorf, M. A.
    Cohen, R. H.
    Dorr, M.
    Rognlien, T.
    Hittinger, J.
    Compton, J.
    Colella, P.
    Martin, D.
    McCorquodale, P.
    [J]. PHYSICS OF PLASMAS, 2013, 20 (01)
  • [2] Gyrokinetic particle simulation of neoclassical transport in the pedestal/scrape-off region of a tokamak plasma
    Ku, S.
    Chang, C-S
    Adams, M.
    Cummings, J.
    Hinton, F.
    Keyes, D.
    Klasky, S.
    Lee, W.
    Lin, Z.
    Parker, S.
    [J]. SCIDAC 2006: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2006, 46 : 87 - 91
  • [3] Particle simulation of neoclassical transport in the plasma edge
    Chang, C. S.
    Ku, S.
    [J]. CONTRIBUTIONS TO PLASMA PHYSICS, 2006, 46 (7-9) : 496 - 503
  • [4] Neoclassical transport benchmark of global full-f gyrokinetic simulation in stellarator configurations
    Matsuoka, Seikichi
    Idomura, Yasuhiro
    Satake, Shinsuke
    [J]. PHYSICS OF PLASMAS, 2018, 25 (02)
  • [5] Full f gyrokinetic method for particle simulation of tokamak transport
    Heikkinen, J. A.
    Janhunen, S. J.
    Kiviniemi, T. P.
    Ogando, F.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (11) : 5582 - 5609
  • [6] GYROKINETIC APPROACH IN PARTICLE SIMULATION
    LEE, WW
    [J]. PHYSICS OF FLUIDS, 1983, 26 (02) : 556 - 562
  • [7] Verification of Gyrokinetic Particle Simulation of Device Size Scaling of Turbulent Transport
    林志宏
    S.ETHIER
    T.S.HAHM
    W.M.TANG
    [J]. Plasma Science and Technology, 2012, (12) : 1125 - 1126
  • [8] Verification of Gyrokinetic Particle Simulation of Device Size Scaling of Turbulent Transport
    Lin Zhihong
    Ethier, S.
    Hahm, T. S.
    Tang, W. M.
    [J]. PLASMA SCIENCE & TECHNOLOGY, 2012, 14 (12): : 1125 - 1126
  • [9] Global gyrokinetic particle simulation of turbulence and transport in realistic tokamak geometry
    Wang, WX
    Lin, Z
    Tang, WM
    Lee, WW
    Ethier, S
    Lewandowski, JLV
    Rewoldt, G
    Hahm, TS
    Manickam, J
    [J]. SCIDAC 2005: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2005, 16 : 59 - 64
  • [10] Verification of Gyrokinetic Particle Simulation of Device Size Scaling of Turbulent Transport
    林志宏
    SETHIER
    TSHAHM
    WMTANG
    [J]. Plasma Science and Technology., 2012, 14 (12) - 1126