Geometrical properties of aggregates with tunable fractal dimension

被引:7
|
作者
Thouy, R
Jullien, R
机构
[1] Laboratoire des Verres, Université Montpellier II, 34095 Montpellier, Place Eugène Bataillon
来源
关键词
D O I
10.1088/0305-4470/30/19/013
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We have computed geometrical characteristics of large clusters (up to 32 768 particles) obtained by a hierarchical cluster-cluster aggregation computer model in three dimensions, the off-lattice variable-D model. Using a 'box-counting' method, we have calculated the fractal dimensions of the surface D-s and the perimeter D-p of their two-dimensional projections as a function of their fractal dimension D. By diagonalizing the radius of gyration tensor, we have obtained numerical estimates for the intrinsic anisotropy coefficients (ratios of the eigenvalues) and we have proposed analytical expressions to describe their behaviour as a function of the fractal dimension.
引用
收藏
页码:6725 / 6735
页数:11
相关论文
共 50 条
  • [31] IN-SITU DETERMINATION OF THE FRACTAL DIMENSION OF AEROSOL AGGREGATES
    EMETS, EP
    NOVOSELOVA, AE
    POLUEKTOV, PP
    USPEKHI FIZICHESKIKH NAUK, 1994, 164 (09): : 959 - 966
  • [32] FRACTAL DIMENSION OF GENERALIZED DIFFUSION-LIMITED AGGREGATES
    HENTSCHEL, HGE
    PHYSICAL REVIEW LETTERS, 1984, 52 (03) : 212 - 215
  • [33] DETERMINATION OF THE FRACTAL DIMENSION OF CARBON-BLACK AGGREGATES
    EHRBURGERDOLLE, F
    TENCE, M
    CARBON, 1990, 28 (2-3) : 448 - 452
  • [34] PROPERTIES OF FRACTAL COLLOID AGGREGATES
    LINDSAY, HM
    LIN, MY
    WEITZ, DA
    SHENG, P
    CHEN, Z
    KLEIN, R
    MEAKIN, P
    FARADAY DISCUSSIONS, 1987, 83 : 153 - 165
  • [35] ELECTROMAGNETIC PROPERTIES OF FRACTAL AGGREGATES
    ROBIN, T
    SOUILLARD, B
    EUROPHYSICS LETTERS, 1993, 21 (03): : 273 - 278
  • [36] ERROR AND ATTACK TOLERANCE OF THE FRACTAL NETWORK MODEL WITH TUNABLE FRACTAL DIMENSION
    Yang, Lei
    Pei, Wenjiang
    Li, Tao
    Cao, Yanfei
    Shen, Yi
    Wang, Shaoping
    He, Zhenya
    2008 INTERNATIONAL CONFERENCE ON NEURAL NETWORKS AND SIGNAL PROCESSING, VOLS 1 AND 2, 2007, : 58 - 61
  • [37] A simple algorithm for constructing fractal aggregates with pre-determined fractal dimension
    Ringl, Christian
    Urbassek, Herbert M.
    COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (07) : 1683 - 1685
  • [38] Dynamics of fractal dimension during phase ordering of a geometrical multifractal
    Peleg, Avner
    Meerson, Baruch
    Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 2000, 62 (2 A): : 1764 - 1768
  • [39] Generation and Geometrical Analysis of Dense Clusters with Variable Fractal Dimension
    Ehrl, Lyonel
    Soos, Miroslav
    Lattuada, Marco
    JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (31): : 10587 - 10599
  • [40] Dynamics of fractal dimension during phase ordering of a geometrical multifractal
    Peleg, A
    Meerson, B
    PHYSICAL REVIEW E, 2000, 62 (02): : 1764 - 1768