Geometrical properties of aggregates with tunable fractal dimension

被引:7
|
作者
Thouy, R
Jullien, R
机构
[1] Laboratoire des Verres, Université Montpellier II, 34095 Montpellier, Place Eugène Bataillon
来源
关键词
D O I
10.1088/0305-4470/30/19/013
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We have computed geometrical characteristics of large clusters (up to 32 768 particles) obtained by a hierarchical cluster-cluster aggregation computer model in three dimensions, the off-lattice variable-D model. Using a 'box-counting' method, we have calculated the fractal dimensions of the surface D-s and the perimeter D-p of their two-dimensional projections as a function of their fractal dimension D. By diagonalizing the radius of gyration tensor, we have obtained numerical estimates for the intrinsic anisotropy coefficients (ratios of the eigenvalues) and we have proposed analytical expressions to describe their behaviour as a function of the fractal dimension.
引用
收藏
页码:6725 / 6735
页数:11
相关论文
共 50 条
  • [21] MULTIMETHOD DETERMINATION OF THE FRACTAL DIMENSION OF HEMATITE AGGREGATES
    ZHANG, JW
    BUFFLE, J
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1995, 209 : 235 - ENVR
  • [22] Fractal dimension of particle aggregates in magnetic fields
    Chin, CJ
    Lu, SC
    Yiacoumi, S
    Tsouris, C
    SEPARATION SCIENCE AND TECHNOLOGY, 2004, 39 (12) : 2839 - 2862
  • [24] Geometrical determination of the lacunarity of agglomerates with integer fractal dimension
    Lapuerta, Magin
    Martos, Francisco J.
    Martin-Gonzalez, Gema
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2010, 346 (01) : 23 - 31
  • [25] Fractal geometrical properties of nuclei
    马维虎
    王建松
    王琦
    S.Mukherjee
    杨磊
    杨彦云
    黄美容
    Chinese Physics C, 2015, (10) : 39 - 45
  • [26] Fractal geometrical properties of nuclei
    Ma Wei-Hu
    Wang Jian-Song
    Wang Qi
    Mukherjee, S.
    Yang Lei
    Yang Yan-Yun
    Huang Mei-Rong
    CHINESE PHYSICS C, 2015, 39 (10)
  • [27] Fractal geometrical properties of nuclei
    马维虎
    王建松
    王琦
    SMukherjee
    杨磊
    杨彦云
    黄美容
    Chinese Physics C, 2015, 39 (10) : 39 - 45
  • [28] FRACTAL DIMENSION OF ALUMINA AGGREGATES GROWN IN 2 DIMENSIONS
    LAROSA, JL
    CAWLEY, JD
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1992, 75 (07) : 1981 - 1984
  • [29] CROSSOVER OF FRACTAL DIMENSION IN DIFFUSION-LIMITED AGGREGATES
    BENSIMON, D
    DOMANY, E
    AHARONY, A
    PHYSICAL REVIEW LETTERS, 1983, 51 (15) : 1394 - 1394
  • [30] Fractal dimension of soil aggregates as an index of soil erodibility
    Ahmadi, Abbas
    Neyshabouri, Mohammad-Reza
    Rouhipour, Hassan
    Asadi, Hossein
    JOURNAL OF HYDROLOGY, 2011, 400 (3-4) : 305 - 311