Semi-spectral method for the Wigner equation

被引:9
|
作者
Furtmaier, O. [1 ]
Succi, S. [2 ]
Mendoza, M. [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Bldg Mat, CH-8093 Zurich, Switzerland
[2] CNR, Ist Applicaz Calcolo, I-00185 Rome, Italy
基金
欧洲研究理事会;
关键词
Wigner equation; Spectral method; Reaction-advection; QUANTUM; SIMULATIONS;
D O I
10.1016/j.jcp.2015.11.023
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a numerical method to solve the Wigner equation in quantum systems of spinless, non-relativistic particles. The method uses a spectral decomposition into L-2(R-d) basis functions in momentum-space to obtain a system of first-order advection-reaction equations. The resulting equations are solved by splitting the reaction and advection steps so as to allow the combination of numerical techniques from quantum mechanics and computational fluid dynamics by identifying the skew-hermitian reaction matrix as a generator of unitary rotations. The method is validated for the case of particles subject to a one-dimensional (an-)harmonic and Morse potential using finite-differences for the advection part. Thereby, we verify the second order of convergence and observe non-classical behavior in the evolution of the Wigner function. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1015 / 1036
页数:22
相关论文
共 50 条
  • [21] THE GAUSSIAN BEAM METHOD FOR THE WIGNER EQUATION WITH DISCONTINUOUS POTENTIALS
    Yin, Dongsheng
    Tang, Min
    Jin, Shi
    INVERSE PROBLEMS AND IMAGING, 2013, 7 (03) : 1051 - 1074
  • [22] SEMI-SPECTRAL NUMERICAL-MODEL FOR WAVE-MEAN FLOW INTERACTIONS IN STRATOSPHERE - APPLICATION TO SUDDEN STRATOSPHERIC WARMINGS
    HOLTON, JR
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 1976, 33 (08) : 1639 - 1649
  • [23] Non-smooth solutions of time-fractional Allen-Cahn problems via novel operational matrix based semi-spectral method with convergence analysis
    Usman, Muhammad
    Hamid, Muhammad
    Lu, Dianchen
    Zhang, Zhengdi
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 159 : 122 - 141
  • [24] On superstability of the Wigner equation
    Ilisevic, Dijana
    Turnsek, Aleksej
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 542 : 391 - 401
  • [25] On a conditional Wigner equation
    J. Chmieliński
    aequationes mathematicae, 1998, 56 (1-2) : 143 - 148
  • [26] Lattice Wigner equation
    Solorzano, S.
    Mendoza, M.
    Succi, S.
    Herrmann, H. J.
    PHYSICAL REVIEW E, 2018, 97 (01)
  • [27] A Hybrid SBP-SAT/Fourier Pseudo-spectral Method for the Transient Wigner Equation Involving Inflow Boundary Conditions
    Sun, Zhangpeng
    Yao, Wenqi
    Yu, Qiuping
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 100 (02)
  • [28] Efficient solution of the Wigner-Liouville equation using a spectral decomposition of the force field
    Van de Put, Maarten L.
    Soree, Bart
    Magnus, Wim
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 350 : 314 - 325
  • [29] Spectral force approach to solve the time-dependent Wigner-Liouville equation
    Van de Put, M.
    Thewissen, M.
    Magnus, W.
    Soree, B.
    Sellier, J. M.
    2014 INTERNATIONAL WORKSHOP ON COMPUTATIONAL ELECTRONICS (IWCE), 2014,
  • [30] On a spectral method of solving the Stokes equation
    V. P. Trubitsyn
    I. E. Rogozhina
    M. K. Kaban
    Izvestiya, Physics of the Solid Earth, 2008, 44 : 18 - 25