Building a Real-Time 2D Lidar Using Deep Learning

被引:0
|
作者
Arubai, Nadim [1 ]
Hamdoun, Omar [1 ]
Jafar, Assef [1 ]
机构
[1] Higher Inst Appl Sci & Technol, Damascus, Syria
关键词
Deep learning - Optical radar - Learning systems - Forecasting;
D O I
10.1155/2021/6652828
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Applying deep learning methods, this paper addresses depth prediction problem resulting from single monocular images. A vector of distances is predicted instead of a whole image matrix. A vector-only prediction decreases training overhead and prediction periods and requires less resources (memory, CPU). We propose a module which is more time efficient than the state-of-the-art modules ResNet, VGG, FCRN, and DORN. We enhanced the network results by training it on depth vectors from other levels (we get a new level by changing the Lidar tilt angle). The predicted results give a vector of distances around the robot, which is sufficient for the obstacle avoidance problem and many other applications.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Real-time visualization using a 2D/3D imaging MMWave radar
    Takács, B
    Sadovnik, L
    Manasson, V
    Wade, M
    Klein, LA
    Wong, D
    Kiss, B
    Benedek, B
    Szijarto, G
    REAL-TIME IMAGING VIII, 2004, 5297 : 101 - 105
  • [42] Real-Time PPG-Based Biometric Identification: Advancing Security with 2D Gram Matrices and Deep Learning Models
    Cherry, Ali
    Nasser, Aya
    Salameh, Wassim
    Ali, Mohamad Abou
    Hajj-Hassan, Mohamad
    SENSORS, 2025, 25 (01)
  • [43] Real-time 2D to 3D video conversion
    Ianir Ideses
    Leonid P. Yaroslavsky
    Barak Fishbain
    Journal of Real-Time Image Processing, 2007, 2 : 3 - 9
  • [44] Real-time 2D to 3D video conversion
    Ideses, Ianir
    Yaroslavsky, Leonid P.
    Fishbain, Barak
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2007, 2 (01) : 3 - 9
  • [45] Real-time vehicle detection and tracking using 3D LiDAR
    Wang, Heng
    Zhang, Xiaodong
    ASIAN JOURNAL OF CONTROL, 2022, 24 (03) : 1459 - 1469
  • [46] Real-time monitoring of CO2 transport pipelines using deep learning
    Kim, Juhyun
    Yoon, Hyunjee
    Hwang, Saebom
    Jeong, Daein
    Ki, Seil
    Liang, Bin
    Jeong, Hoonyoung
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 181 : 480 - 492
  • [47] LO-Net: Deep Real-time Lidar Odometry
    Li, Qing
    Chen, Shaoyang
    Wang, Cheng
    Li, Xin
    Wen, Chenglu
    Cheng, Ming
    Li, Jonathan
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 8465 - 8474
  • [48] Toward real-time 2D localization in outdoor environments
    Mallet, A
    Lacroix, S
    1998 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-4, 1998, : 2827 - 2832
  • [49] Real-Time Optimized Trajectories for 2D Emitter Localization using a UAVs team
    Lara, Cesar Manuel Arrojo
    Navarro-Corcuera, Juan Jose
    Miehe, Fabian
    Opitz, Felix
    2023 24TH INTERNATIONAL RADAR SYMPOSIUM, IRS, 2023,
  • [50] Real-time mechanistic monitoring of an acetal hydrolysis using ultrafast 2D NMR
    Queiroz, Luiz H. K., Jr.
    Giraudeau, Patrick
    dos Santos, Fabiane A. B.
    de Oliveira, Kleber T.
    Ferreira, Antonio G.
    MAGNETIC RESONANCE IN CHEMISTRY, 2012, 50 (07) : 496 - 501