Building a Real-Time 2D Lidar Using Deep Learning

被引:0
|
作者
Arubai, Nadim [1 ]
Hamdoun, Omar [1 ]
Jafar, Assef [1 ]
机构
[1] Higher Inst Appl Sci & Technol, Damascus, Syria
关键词
Deep learning - Optical radar - Learning systems - Forecasting;
D O I
10.1155/2021/6652828
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Applying deep learning methods, this paper addresses depth prediction problem resulting from single monocular images. A vector of distances is predicted instead of a whole image matrix. A vector-only prediction decreases training overhead and prediction periods and requires less resources (memory, CPU). We propose a module which is more time efficient than the state-of-the-art modules ResNet, VGG, FCRN, and DORN. We enhanced the network results by training it on depth vectors from other levels (we get a new level by changing the Lidar tilt angle). The predicted results give a vector of distances around the robot, which is sufficient for the obstacle avoidance problem and many other applications.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Real-time relative permeability prediction using deep learning
    Arigbe, O. D.
    Oyeneyin, M. B.
    Arana, I.
    Ghazi, M. D.
    JOURNAL OF PETROLEUM EXPLORATION AND PRODUCTION TECHNOLOGY, 2019, 9 (02) : 1271 - 1284
  • [32] Real-time 3D-LiDAR object detection in autonomous vehicle systems using cluster-based candidates and deep learning
    Kim M.-G.
    Bae S.-H.
    Kim H.
    Journal of Institute of Control, Robotics and Systems, 2019, 25 (09): : 795 - 801
  • [33] 2D/3D real-time registration as a supervised machine learning problem.
    Steininger, P.
    Neuner, M.
    Fritscher, K.
    Sedlmayer, F.
    Deutschmann, H.
    STRAHLENTHERAPIE UND ONKOLOGIE, 2011, 187 (01) : 81 - 81
  • [34] Research on Real-Time Ship Detection Using Deep Learning
    Yu, Jingming
    Wang, Jie
    Ren, Rong
    Lai, Qiuyu
    Luo, Xinpeng
    Lu, Hua
    2022 IEEE 7TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION ENGINEERING, ICITE, 2022, : 481 - 485
  • [35] Real-time reef fishes identification using deep learning
    Yusup, I. M.
    Iqbal, M.
    Jaya, I
    3RD INTERNATIONAL CONFERENCE ON MARINE SCIENCE (ICMS) 2019 - TOWARDS SUSTAINABLE MARINE RESOURCES AND ENVIRONMENT, 2020, 429
  • [36] Real-time relative permeability prediction using deep learning
    O. D. Arigbe
    M. B. Oyeneyin
    I. Arana
    M. D. Ghazi
    Journal of Petroleum Exploration and Production Technology, 2019, 9 : 1271 - 1284
  • [37] Real-Time Body Pose Recognition Using 2D or 3D Haarlets
    Michael Van den Bergh
    Esther Koller-Meier
    Luc Van Gool
    International Journal of Computer Vision, 2009, 83 : 72 - 84
  • [38] Real-Time Body Pose Recognition Using 2D or 3D Haarlets
    Van den Bergh, Michael
    Koller-Meier, Esther
    Van Gool, Luc
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2009, 83 (01) : 72 - 84
  • [39] Real-time Driver Drowsiness Detection using Deep Learning
    Dipu, Md Tanvir Ahammed
    Hossain, Syeda Sumbul
    Arafat, Yeasir
    Rafiq, Fatama Binta
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (07) : 844 - 850
  • [40] Fully automatic real-time ejection fraction and MAPSE measurements in 2D echocardiography using deep neural networks
    Smistad, Erik
    Ostvik, Andreas
    Salte, Ivar Mjaland
    Leclerc, Sarah
    Bernard, Olivier
    Lovstakken, Lasse
    2018 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2018,