Inducible Caspase-9 Selectively Modulates the Toxicities of CD19-Specific Chimeric Antigen Receptor-Modified T Cells

被引:198
|
作者
Diaconu, Iulia [1 ,2 ]
Ballard, Brandon [1 ,2 ]
Zhang, Ming [1 ,2 ]
Chen, Yuhui [7 ]
West, John [6 ]
Dotti, Gianpietro [1 ,2 ,3 ,4 ,6 ]
Savoldols, Barbara [1 ,2 ,5 ,7 ]
机构
[1] Methodist Hosp, Baylor Coll Med, Ctr Cell & Gene Therapy, Houston, TX 77030 USA
[2] Texas Childrens Hosp, Houston, TX 77030 USA
[3] Methodist Hosp, Baylor Coll Med, Dept Med, Houston, TX 77030 USA
[4] Methodist Hosp, Baylor Coll Med, Dept Immunol, Houston, TX 77030 USA
[5] Methodist Hosp, Baylor Coll Med, Dept Pediat, Houston, TX 77030 USA
[6] Univ N Carolina, Lineberger Comprehens Canc Ctr, Dept Microbiol & Immunol, Chapel Hill, NC 27599 USA
[7] Univ N Carolina, Lineberger Comprehens Canc Ctr, Dept Pediat, Chapel Hill, NC 27599 USA
关键词
ENGINEERED DONOR LYMPHOCYTES; SUICIDE-GENE; IN-VIVO; SAFETY SWITCH; EXPANSION; CYTOKINE; INFUSION; LEUKEMIA; ENHANCE;
D O I
10.1016/j.ymthe.2017.01.011
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Immunotherapy with T cells expressing the chimeric antigen receptor (CAR) specific for the CD19 antigen (CD19.CAR-Ts) is a very effective treatment in B cell lymphoid malignancies. However, B cell aplasia and cytokine release syndrome (CRS) secondary to the infusion of CD19.CAR-Ts remain significant drawbacks. The inclusion of safety switches into the vector encoding the CAR is seen as the safest method to terminate the effects of CD19.CAR-Ts in case of severe toxicities or after achieving long-term sustained remissions. By contrast, the complete elimination of CD19.CAR-Ts when CRS occurs may jeopardize clinical responses as CRS and antitumor activity seem to concur. We have demonstrated, in a humanized mouse model, that the inducible caspase-9 (iC9) safety switch can eliminate CD19.CAR-Ts in a dose-dependent manner, allowing either a selective containment of CD19.CAR-T expansion in case of CRS or complete deletion on demand granting normal B cell reconstitution.
引用
收藏
页码:580 / 592
页数:13
相关论文
共 50 条
  • [31] Kinetics of Tumor Destruction by Chimeric Antigen Receptor-modified T Cells
    Anurathapan, Usanarat
    Chan, Robert C.
    Hindi, Hakeem F.
    Mucharla, Roopa
    Bajgain, Pradip
    Hayes, Brendan C.
    Fisher, William E.
    Heslop, Helen E.
    Rooney, Cliona M.
    Brenner, Malcolm K.
    Leen, Ann M.
    Vera, Juan F.
    MOLECULAR THERAPY, 2014, 22 (03) : 623 - 633
  • [32] Manufacture of T cells using the Sleeping Beauty system to enforce expression of a CD19-specific chimeric antigen receptor
    Singh, H.
    Moyes, J. S. E.
    Huls, M. H.
    Cooper, L. J. N.
    CANCER GENE THERAPY, 2015, 22 (02) : 95 - 100
  • [33] Dual Targeting of Mesothelin and CD19 with Chimeric Antigen Receptor-Modified T Cells in Patients with Metastatic Pancreatic Cancer
    Ko, Andrew H.
    Jordan, Alexander C.
    Tooker, Evan
    Lacey, Simon F.
    Chang, Renee B.
    Li, Yan
    Venook, Alan P.
    Tempero, Margaret
    Damon, Lloyd
    Fong, Lawrence
    O'Hara, Mark H.
    Levine, Bruce L.
    Melenhorst, J. Joseph
    Plesa, Gabriela
    June, Carl H.
    Beatty, Gregory L.
    MOLECULAR THERAPY, 2020, 28 (11) : 2367 - 2378
  • [34] Advances of CD19-directed chimeric antigen receptor-modified T cells in refractory/relapsed acute lymphoblastic leukemia
    Wei, Guoqing
    Ding, Lijuan
    Wang, Jiasheng
    Hu, Yongxian
    Huang, He
    EXPERIMENTAL HEMATOLOGY & ONCOLOGY, 2017, 6
  • [35] Advances of CD19-directed chimeric antigen receptor-modified T cells in refractory/relapsed acute lymphoblastic leukemia
    Guoqing Wei
    Lijuan Ding
    Jiasheng Wang
    Yongxian Hu
    He Huang
    Experimental Hematology & Oncology, 6
  • [36] Abrogation of Immune Effector Cell Neurotoxicity Syndrome (ICANS) By Rimiducid (RIM) in Patients Treated with CD19-Specific Chimeric Antigen Receptor Modified T-Cells (CAR-T) Engineered with an Inducible Caspase 9 (iC9 CAR.19)-Clinical and Pharmacodynamic Correlates
    Foster, Matthew C.
    Savoldo, Barbara
    Lau, Winnie
    Rubinos, Clio
    Grover, Natalie S.
    Armistead, Paul M.
    Coghill, James M., Jr.
    Jamieson, Katarzyna Joanna
    Hagan, Robert
    Morrison, J. Kaitlin
    Buchanan, Faith Brianne
    Cheng, Catherine Joyce Arago
    Ivanova, Anastasia
    Cavallo, Tammy
    West, John
    Gonzalez, Megan
    Serody, Jonathan S.
    Dotti, Gianpietro
    BLOOD, 2022, 140 : 7437 - 7438
  • [37] Efficacy and Toxicity of CD19-Specific Chimeric Antigen Receptor T Cells Alone or in Combination with Ibrutinib for Relapsed and/or Refractory CLL
    Gauthier, Jordan
    Hirayama, Alexandre V.
    Hay, Kevin A.
    Li, Daniel
    Lymp, James
    Sheih, Alyssa
    Purushe, Janaki
    Pender, Barbara S.
    Hawkins, Reed M.
    Vakil, Aesha
    Tinh-Doan Phi
    Steinmetz, Rachel N.
    Chapuis, Aude G.
    Till, Brian G.
    Dhawale, Tejaswini
    Hendrie, Paul C.
    Kiem, Hans-Peter
    Ramos, Jorge
    Shadman, Mazyar
    Cassaday, Ryan D.
    Acharya, Utkarsh H.
    Riddell, Stanley R.
    Maloney, David G.
    Turtle, Cameron J.
    BIOLOGY OF BLOOD AND MARROW TRANSPLANTATION, 2019, 25 (03)
  • [38] Mesothelin as a target for chimeric antigen receptor-modified T cells as anticancer therapy
    O'Hara, Mark
    Stashwick, Caitlin
    Haas, Andrew R.
    Tanyi, Janos L.
    IMMUNOTHERAPY, 2016, 8 (04) : 449 - 460
  • [39] Development of chimeric antigen receptor-modified T cells for the treatment of esophageal cancer
    Yu, Feng
    Wang, Xiaoyan
    Shi, Hui
    Jiang, Maorong
    Xu, Jun
    Sun, Min
    Xu, Qinggang
    Addai, Frank Peprah
    Shi, Haifeng
    Gu, Jie
    Zhou, Yang
    Liu, Liqiong
    TUMORI JOURNAL, 2021, 107 (04): : 341 - 352
  • [40] eNovel GD2-specific chimeric antigen receptor-modified T cells targeting osteosarcoma
    Chulanetra, Monrat
    Sayour, Elias
    Eldjerou, Lamis
    Lagmay, Joanne
    Milner, Rowan
    Slayton, William
    Chang, Lung-Ji
    CANCER RESEARCH, 2015, 75