Inducible Caspase-9 Selectively Modulates the Toxicities of CD19-Specific Chimeric Antigen Receptor-Modified T Cells

被引:198
|
作者
Diaconu, Iulia [1 ,2 ]
Ballard, Brandon [1 ,2 ]
Zhang, Ming [1 ,2 ]
Chen, Yuhui [7 ]
West, John [6 ]
Dotti, Gianpietro [1 ,2 ,3 ,4 ,6 ]
Savoldols, Barbara [1 ,2 ,5 ,7 ]
机构
[1] Methodist Hosp, Baylor Coll Med, Ctr Cell & Gene Therapy, Houston, TX 77030 USA
[2] Texas Childrens Hosp, Houston, TX 77030 USA
[3] Methodist Hosp, Baylor Coll Med, Dept Med, Houston, TX 77030 USA
[4] Methodist Hosp, Baylor Coll Med, Dept Immunol, Houston, TX 77030 USA
[5] Methodist Hosp, Baylor Coll Med, Dept Pediat, Houston, TX 77030 USA
[6] Univ N Carolina, Lineberger Comprehens Canc Ctr, Dept Microbiol & Immunol, Chapel Hill, NC 27599 USA
[7] Univ N Carolina, Lineberger Comprehens Canc Ctr, Dept Pediat, Chapel Hill, NC 27599 USA
关键词
ENGINEERED DONOR LYMPHOCYTES; SUICIDE-GENE; IN-VIVO; SAFETY SWITCH; EXPANSION; CYTOKINE; INFUSION; LEUKEMIA; ENHANCE;
D O I
10.1016/j.ymthe.2017.01.011
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Immunotherapy with T cells expressing the chimeric antigen receptor (CAR) specific for the CD19 antigen (CD19.CAR-Ts) is a very effective treatment in B cell lymphoid malignancies. However, B cell aplasia and cytokine release syndrome (CRS) secondary to the infusion of CD19.CAR-Ts remain significant drawbacks. The inclusion of safety switches into the vector encoding the CAR is seen as the safest method to terminate the effects of CD19.CAR-Ts in case of severe toxicities or after achieving long-term sustained remissions. By contrast, the complete elimination of CD19.CAR-Ts when CRS occurs may jeopardize clinical responses as CRS and antitumor activity seem to concur. We have demonstrated, in a humanized mouse model, that the inducible caspase-9 (iC9) safety switch can eliminate CD19.CAR-Ts in a dose-dependent manner, allowing either a selective containment of CD19.CAR-T expansion in case of CRS or complete deletion on demand granting normal B cell reconstitution.
引用
收藏
页码:580 / 592
页数:13
相关论文
共 50 条
  • [21] The impact of the intestinal microbiome on toxicity and efficacy of CD19-specific chimeric antigen receptor (CAR) T cells
    Schubert, M. -L.
    Blumenberg, V.
    Zamir, E.
    Schmidt, S.
    Rohrbach, R.
    Waldhoff, P.
    Bozic, D.
    von Bergwelt, M.
    Mueller-Tidow, C.
    Dreger, P.
    Schmitt, M.
    Subklewe, M.
    Stein-Thoeringer, C.
    ONCOLOGY RESEARCH AND TREATMENT, 2020, 43 (SUPPL 4) : 240 - 241
  • [22] Idelalisib for optimized CD19-specific chimeric antigen receptor T cells in chronic lymphocytic leukemia patients
    Stock, Sophia
    Uebelhart, Rudolf
    Schubert, Maria-Luisa
    Fan, Fuli
    He, Bailin
    Hoffmann, Jean-Marc
    Wang, Lei
    Wang, Sanmei
    Gong, Wenjie
    Neuber, Brigitte
    Hueckelhoven-Krauss, Angela
    Gern, Ulrike
    Christ, Christiane
    Hexel, Monika
    Schmitt, Anita
    Schmidt, Patrick
    Krauss, Juergen
    Jaeger, Dirk
    Mueller-Tidow, Carsten
    Dreger, Peter
    Schmitt, Michael
    Sellner, Leopold
    INTERNATIONAL JOURNAL OF CANCER, 2019, 145 (05) : 1312 - 1324
  • [23] Artificial antigen presenting cell can be used to propagate genetically modified CD19-specific T cells through chimeric antigen receptor.
    Numbenjapon, T
    Serrano, LMA
    Olivares, S
    Chang, WC
    Singh, H
    Kowolik, CM
    Gonzalez, S
    Gonzalez, N
    Cooper, LJN
    BLOOD, 2005, 106 (11) : 377A - 377A
  • [24] Distribution of chimeric antigen receptor-modified T cells against CD19 in B-cell malignancies
    Ying, Zhitao
    He, Ting
    Wang, Xiaopei
    Zheng, Wen
    Lin, Ningjing
    Tu, Meifeng
    Xie, Yan
    Ping, Lingyan
    Zhang, Chen
    Liu, Weiping
    Deng, Lijuan
    Wu, Meng
    Feng, Feier
    Leng, Xin
    Du, Tingting
    Qi, Feifei
    Hu, Xuelian
    Ding, Yanping
    Lu, Xin-an
    Song, Yuqin
    Zhu, Jun
    BMC CANCER, 2021, 21 (01)
  • [25] Preclinical safety evaluation of chimeric antigen receptor-modified T cells against CD19 in NSG mice
    Wen, Hairuo
    Qu, Zhe
    Yan, Yujing
    Pu, Chengfei
    Wang, Chao
    Jiang, Hua
    Hou, Tiantian
    Huo, Yan
    ANNALS OF TRANSLATIONAL MEDICINE, 2019, 7 (23)
  • [26] Manufacture of T cells using the Sleeping Beauty system to enforce expression of a CD19-specific chimeric antigen receptor
    H Singh
    J S E Moyes
    M H Huls
    L J N Cooper
    Cancer Gene Therapy, 2015, 22 : 95 - 100
  • [27] Distribution of chimeric antigen receptor-modified T cells against CD19 in B-cell malignancies
    Zhitao Ying
    Ting He
    Xiaopei Wang
    Wen Zheng
    Ningjing Lin
    Meifeng Tu
    Yan Xie
    Lingyan Ping
    Chen Zhang
    Weiping Liu
    Lijuan Deng
    Meng Wu
    Feier Feng
    Xin Leng
    Tingting Du
    Feifei Qi
    Xuelian Hu
    Yanping Ding
    Xin-an Lu
    Yuqin Song
    Jun Zhu
    BMC Cancer, 21
  • [28] The clinical study on CD19-directed chimeric antigen receptor-modified T cells in patient with Richter Syndrome
    Xia, Leiming
    Chen, Qian
    Li, Qiao
    Li, Tan
    Wang, Yi
    Bao, Yangyi
    CANCER RESEARCH, 2017, 77
  • [29] Chimeric Antigen Receptor-Modified T Cells for Acute Lymphoid Leukemia
    Grupp, Stephan A.
    Kalos, Michael
    Barrett, David
    Aplenc, Richard
    Porter, David L.
    Rheingold, Susan R.
    Teachey, David T.
    Chew, Anne
    Hauck, Bernd
    Wright, J. Fraser
    Milone, Michael C.
    Levine, Bruce L.
    June, Carl H.
    NEW ENGLAND JOURNAL OF MEDICINE, 2013, 368 (16): : 1509 - 1518
  • [30] Chimeric Antigen Receptor-Modified T Cells in Chronic Lymphoid Leukemia
    Porter, David L.
    Levine, Bruce L.
    Kalos, Michael
    Bagg, Adam
    June, Carl H.
    NEW ENGLAND JOURNAL OF MEDICINE, 2011, 365 (08): : 725 - 733